Liu, Kefeng; Yang, Xiaokui Ricci curvatures on Hermitian manifolds. (English) Zbl 1365.53065 Trans. Am. Math. Soc. 369, No. 7, 5157-5196 (2017). In this paper, the authors introduce two cohomology groups to study the geometry of compact, complex (especially, non-Kähler) manifolds, namely the Bott-Chern cohomology \[ H^{p,q}_{BC}(M):= \frac{\text{Ker } d \cap \Omega^{p,q}(M)}{\text{Im } \partial\overline{\partial} \cap \Omega^{p,q}(M)} \]and the Aeppli cohomology\[ H^{p,q}_{A}(M):=\frac{\text{Ker } \partial\overline{\partial} \cap \Omega^{p,q}(M)}{\text{Im } \partial \cap \Omega^{p,q}(M)+ \text{Im }\overline{\partial} \cap \Omega^{p,q}(M)}. \] Let \(\mathrm{Pic}(M)\) be the set of holomorphic line bundles over \(M\). Similar to the first Chern class map \(c_1:\mathrm{Pic}(M)\rightarrow H^{1,1}_{\overline{\partial}}(M)\), there is a first Aeppli-Chern class map \(c_1^{{AC}}:\mathrm{Pic}(M)\rightarrow H^{1,1}_{{A}}(M)\), which can be described as follows. Let \(L\to M\) be a holomorphic line bundle over \(M\). The first Aeppli-Chern class is defined as \(c^{AC}_1(L)=\left[-\sqrt{-1}\partial\overline{\partial}\log h\right]_A \in H^{1,1}_{A}(M)\) where \(h\) is an arbitrary smooth Hermitian metric on \(L\). The authors show that the \((1,1)\)-component of the curvature \(2\)-form of the Levi-Civita connection on the anti-canonical line bundle represents this class. The authors systematically investigate the relationship between a variety of Ricci curvatures on Hermitian manifolds and the background Riemannian manifolds. Moreover, they study non-Kähler Calabi-Yau manifolds by using the first Aeppli-Chern class and the Levi-Civita Ricci-flat metrics. In particular, they construct explicit Levi-Civita Ricci-flat metrics on Hopf manifolds \(\mathbb S^{2n-1}\times \mathbb S^1\). The authors also construct a smooth family of Gauduchon metrics on a compact Hermitian manifolds such that the metrics are in the same first Aeppli-Chern class, and their first Chern-Ricci curvatures are the same and nonnegative, but their Riemannian scalar curvatures are constant and vary smoothly between \(-\infty\) and a positive number. In particular, it shows that Hermitian manifolds with nonnegative first Chern class can admit Hermitian metrics with strictly negative Riemannian scalar curvature. Reviewer: Nicolai K. Smolentsev (Kemerovo) Cited in 1 ReviewCited in 35 Documents MSC: 53C55 Global differential geometry of Hermitian and Kählerian manifolds 32Q25 Calabi-Yau theory (complex-analytic aspects) 32Q20 Kähler-Einstein manifolds Keywords:Bott-Chern cohomology; Aeppli cohomology; holomorphic line bundles; first Aeppli-Chern class; non-Kähler Calabi-Yau manifolds; Gauduchon metrics; Hermitian manifolds; almost Hermitian manifolds; compact complex non-Kähler manifolds PDF BibTeX XML Cite \textit{K. Liu} and \textit{X. Yang}, Trans. Am. Math. Soc. 369, No. 7, 5157--5196 (2017; Zbl 1365.53065) Full Text: DOI arXiv References: [1] Alexandrov, Bogdan; Ivanov, Stefan, Vanishing theorems on Hermitian manifolds, Differential Geom. Appl., 14, no. 3, 251-265 (2001) · Zbl 0986.53025 [2] Angella, Daniele; Tomassini, Adriano, On the \(\partial \overline{\partial } \)-lemma and Bott-Chern cohomology, Invent. Math., 192, no. 1, 71-81 (2013) · Zbl 1271.32011 [3] Apostolov, Vestislav; Draghici, Tedi, Hermitian conformal classes and almost K\"ahler structures on \(4\)-manifolds, Differential Geom. Appl., 11, no. 2, 179-195 (1999) · Zbl 0978.53117 [4] Apostolov, Vestislav; Draghici, Tedi, The curvature and the integrability of almost-K\"ahler manifolds: a survey. Symplectic and contact topology: interactions and perspectives, Toronto, ON/Montreal, QC, 2001, Fields Inst. Commun. 35, 25-53 (2003), Amer. Math. Soc., Providence, RI · Zbl 1050.53031 [5] Bor, Gil; Hern{\'a}ndez-Lamoneda, Luis, The canonical bundle of a Hermitian manifold, Bol. Soc. Mat. Mexicana (3), 5, no. 1, 187-198 (1999) · Zbl 0977.53063 [6] Barth, Wolf P.; Hulek, Klaus; Peters, Chris A. M.; Van de Ven, Antonius, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics] 4, xii+436 pp. (2004), Springer-Verlag, Berlin · Zbl 1036.14016 [7] Chiose, Ionu\aa, Obstructions to the existence of K\"ahler structures on compact complex manifolds, Proc. Amer. Math. Soc., 142, no. 10, 3561-3568 (2014) · Zbl 1310.32023 [8] CTW J.-C. Chu, V. Tosatti, and B. Weinkove, The Monge-Amp\`ere equation for non-integrable almost complex structures, arXiv:1603.00706. · Zbl 1452.32035 [9] Deligne, Pierre; Griffiths, Phillip; Morgan, John; Sullivan, Dennis, Real homotopy theory of K\"ahler manifolds, Invent. Math., 29, 3, 245-274 (1975) · Zbl 0312.55011 [10] Demailly, Jean-Pierre; Paun, Mihai, Numerical characterization of the K\`“ahler cone of a compact K{\'”a}hler manifold, Ann. of Math. (2), 159, no. 3, 1247-1274 (2004) · Zbl 1064.32019 [11] Fino, Anna; Grantcharov, Gueo, Properties of manifolds with skew-symmetric torsion and special holonomy, Adv. Math., 189, no. 2, 439-450 (2004) · Zbl 1114.53043 [12] Fino, Anna; Parton, Maurizio; Salamon, Simon, Families of strong KT structures in six dimensions, Comment. Math. Helv., 79, no. 2, 317-340 (2004) · Zbl 1062.53062 [13] Fino, Anna; Ugarte, Luis, On generalized Gauduchon metrics, Proc. Edinb. Math. Soc. (2), 56, no. 3, 733-753 (2013) · Zbl 1287.53065 [14] Fu, Jixiang, Specific non-K{\"a}hler Hermitian metrics on compact complex manifolds. Recent developments in geometry and analysis, Adv. Lect. Math. (ALM) 23, 79-90 (2012), Int. Press, Somerville, MA · Zbl 1320.53088 [15] Fu, Jixiang, Balanced metrics. Su Buqing memorial lectures. No. 1, Tohoku Math. Publ. 35, 1-29 (2011), Tohoku Univ., Sendai · Zbl 1245.32003 [16] Fu, Jixiang, On non-K{\"a}hler Calabi-Yau threefolds with balanced metrics. Proceedings of the International Congress of Mathematicians. Volume II, 705-716 (2010), Hindustan Book Agency, New Delhi · Zbl 1244.32014 [17] Fu, Ji-Xiang; Yau, Shing-Tung, The theory of superstring with flux on non-K{\"a}hler manifolds and the complex Monge-Amp{\`e}re equation, J. Differential Geom., 78, no. 3, 369-428 (2008) · Zbl 1141.53036 [18] Fu, Jixiang; Li, Jun; Yau, Shing-Tung, Balanced metrics on non-K{\"a}hler Calabi-Yau threefolds, J. Differential Geom., 90, no. 1, 81-129 (2012) · Zbl 1264.32020 [19] Fu, Jixiang; Wang, Zhizhang; Wu, Damin, Form-type Calabi-Yau equations, Math. Res. Lett., 17, no. 5, 887-903 (2010) · Zbl 1238.32016 [20] Fu, Jixiang; Wang, Zhizhang; Wu, Damin, Semilinear equations, the \(\gamma_k\) function, and generalized Gauduchon metrics, J. Eur. Math. Soc. (JEMS), 15, no. 2, 659-680 (2013) · Zbl 1267.32021 [21] Fu, Jixiang; Zhou, Xianchao, Twistor geometry of Riemannian 4-manifolds by moving frames, Comm. Anal. Geom., 23, no. 4, 819-839 (2015) · Zbl 1328.53059 [22] Ganchev, Georgi; Ivanov, Stefan, Holomorphic and Killing vector fields on compact balanced Hermitian manifolds, Internat. J. Math., 11, no. 1, 15-28 (2000) · Zbl 1110.53306 [23] Ganchev, Georgi; Ivanov, Stefan, Harmonic and holomorphic 1-forms on compact balanced Hermitian manifolds, Differential Geom. Appl., 14, no. 1, 79-93 (2001) · Zbl 0991.53046 [24] Gauduchon, Paul, Fibr{\'e}s hermitiens {\`“a} endomorphisme de Ricci non n{\'”e}gatif, Bull. Soc. Math. France, 105, 2, 113-140 (1977) · Zbl 0382.53045 [25] Gauduchon, Paul, \(La 1\)-forme de torsion d’une vari{\'e}t{\'e} hermitienne compacte, Math. Ann., 267, no. 4, 495-518 (1984) · Zbl 0523.53059 [26] Gill, Matt, Convergence of the parabolic complex Monge-Amp{\`e}re equation on compact Hermitian manifolds, Comm. Anal. Geom., 19, no. 2, 277-303 (2011) · Zbl 1251.32035 [27] Gill1 M. Gill, The Chern-Ricci flow on smooth minimal models of general type, arXiv:1307.0066 [28] Gill, Matthew; Smith, Daniel, The behavior of the Chern scalar curvature under the Chern-Ricci flow, Proc. Amer. Math. Soc., 143, no. 11, 4875-4883 (2015) · Zbl 1323.53073 [29] Grantcharov, D.; Grantcharov, G.; Poon, Y. S., Calabi-Yau connections with torsion on toric bundles, J. Differential Geom., 78, no. 1, 13-32 (2008) · Zbl 1171.53044 [30] Gray, Alfred, Curvature identities for Hermitian and almost Hermitian manifolds, T{\^o}hoku Math. J. (2), 28, 4, 601-612 (1976) · Zbl 0351.53040 [31] Heier, Gordon; Wong, Bun, Scalar curvature and uniruledness on projective manifolds, Comm. Anal. Geom., 20, no. 4, 751-764 (2012) · Zbl 1266.32033 [32] Huckleberry, Alan T.; Kebekus, Stefan; Peternell, Thomas, Group actions on \(S^6\) and complex structures on \(\mathbf{P}_3\), Duke Math. J., 102, no. 1, 101-124 (2000) · Zbl 0971.53024 [33] Ivanov, S.; Papadopoulos, G., Vanishing theorems and string backgrounds, Classical Quantum Gravity, 18, no. 6, 1089-1110 (2001) · Zbl 0990.53078 [34] Ivanov, S.; Papadopoulos, G., Vanishing theorems on \((\ell |k)\)-strong K{\"a}hler manifolds with torsion, Adv. Math., 237, 147-164 (2013) · Zbl 1280.53066 [35] LeBrun, Claude, Orthogonal complex structures on \(S^6\), Proc. Amer. Math. Soc., 101, no. 1, 136-138 (1987) · Zbl 0629.53037 [36] LeBrun, Claude, On Einstein, Hermitian 4-manifolds, J. Differential Geom., 90, no. 2, 277-302 (2012) · Zbl 1254.53076 [37] Li, Tian-Jun; Zhang, Weiyi, Comparing tamed and compatible symplectic cones and cohomological properties of almost complex manifolds, Comm. Anal. Geom., 17, no. 4, 651-683 (2009) · Zbl 1225.53066 [38] Li, Yi, A priori estimates for Donaldson’s equation over compact Hermitian manifolds, Calc. Var. Partial Differential Equations, 50, no. 3-4, 867-882 (2014) · Zbl 1296.53141 [39] Liu, Kefeng; Sun, Xiaofeng; Yang, Xiaokui, Positivity and vanishing theorems for ample vector bundles, J. Algebraic Geom., 22, no. 2, 303-331 (2013) · Zbl 1264.14057 [40] Liu, Kefeng; Yang, Xiaokui, Hermitian harmonic maps and non-degenerate curvatures, Math. Res. Lett., 21, no. 4, 831-862 (2014) · Zbl 1315.53080 [41] Liu, Ke-Feng; Yang, Xiao-Kui, Geometry of Hermitian manifolds, Internat. J. Math., 23, no. 6, 1250055, 40 pp. (2012) · Zbl 1248.53055 [42] Mart{\'\i }n Cabrera, Francisco; Swann, Andrew, Curvature of special almost Hermitian manifolds, Pacific J. Math., 228, no. 1, 165-184 (2006) · Zbl 1129.53016 [43] Michelsohn, M. L., On the existence of special metrics in complex geometry, Acta Math., 149, 3-4, 261-295 (1982) · Zbl 0531.53053 [44] Popovici, Dan, Aeppli cohomology classes associated with Gauduchon metrics on compact complex manifolds, Bull. Soc. Math. France, 143, no. 4, 763-800 (2015) · Zbl 1347.53060 [45] Po2 D. Popovici, Holomorphic deformations of balanced Calabi-Yau \(\partial \bar \partial \)-manifolds, arXiv:1304.0331 [46] Popovici, Dan, Deformation openness and closedness of various classes of compact complex manifolds; examples, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13, no. 2, 255-305 (2014) · Zbl 1294.32006 [47] Streets, Jeffrey; Tian, Gang, Hermitian curvature flow, J. Eur. Math. Soc. (JEMS), 13, no. 3, 601-634 (2011) · Zbl 1214.53055 [48] Streets, Jeffrey; Tian, Gang, A parabolic flow of pluriclosed metrics, Int. Math. Res. Not. IMRN, no. 16, 3101-3133 (2010) · Zbl 1198.53077 [49] Streets, Jeffrey; Tian, Gang, Regularity results for pluriclosed flow, Geom. Topol., 17, no. 4, 2389-2429 (2013) · Zbl 1272.32022 [50] Tang, Zizhou, Curvature and integrability of an almost Hermitian structure, Internat. J. Math., 17, no. 1, 97-105 (2006) · Zbl 1111.53027 [51] Tosatti, Valentino, Non-K{\"a}hler Calabi-Yau manifolds. Analysis, complex geometry, and mathematical physics: in honor of Duong H. Phong, Contemp. Math. 644, 261-277 (2015), Amer. Math. Soc., Providence, RI · Zbl 1341.53108 [52] Tosatti, Valentino; Weinkove, Ben, The complex Monge-Amp{\`e}re equation on compact Hermitian manifolds, J. Amer. Math. Soc., 23, no. 4, 1187-1195 (2010) · Zbl 1208.53075 [53] Tosatti, Valentino; Weinkove, Ben, The Chern-Ricci flow on complex surfaces, Compos. Math., 149, no. 12, 2101-2138 (2013) · Zbl 1286.53074 [54] Tosatti, Valentino; Weinkove, Ben, On the evolution of a Hermitian metric by its Chern-Ricci form, J. Differential Geom., 99, no. 1, 125-163 (2015) · Zbl 1317.53092 [55] TW5 V. Tosatti and B. Weinkove, The Monge-Amp\`“ere equation for \((n-1)\)-plurisubharmonic functions on a compact K\'”ahler manifold, arXiv:1305.7511. [56] TW6 V. Tosatti and B. Weinkove, Hermitian metrics, \((n-1, n-1)\) forms and Monge-Amp\`ere equations, arXiv:1310.6326 · Zbl 1435.32052 [57] Tosatti, Valentino; Weinkove, Ben; Yang, Xiaokui, Collapsing of the Chern-Ricci flow on elliptic surfaces, Math. Ann., 362, no. 3-4, 1223-1271 (2015) · Zbl 1321.53084 [58] Tricerri, Franco; Vanhecke, Lieven, Curvature tensors on almost Hermitian manifolds, Trans. Amer. Math. Soc., 267, 2, 365-397 (1981) · Zbl 0484.53014 [59] Vaisman, Izu, Some curvature properties of complex surfaces, Ann. Mat. Pura Appl. (4), 132, 1-18 (1983) (1982) · Zbl 0512.53058 [60] Voisin, Claire, Hodge theory and complex algebraic geometry. I, Cambridge Studies in Advanced Mathematics 76, x+322 pp. (2002), Cambridge University Press, Cambridge · Zbl 1005.14002 [61] Yang, Xiaokui, Hermitian manifolds with semi-positive holomorphic sectional curvature, Math. Res. Lett., 23, no. 3, 939-952 (2016) · Zbl 1354.32016 [62] Yang14 X.-K. Yang, Big vector bundles and compact complex manifolds with semi-positive holomorphic bisectional curvature, arXiv:1412.5156. To appear in Math. Ann. [63] Yau, Shing Tung, On the Ricci curvature of a compact K{\"a}hler manifold and the complex Monge-Amp{\`e}re equation. I, Comm. Pure Appl. Math., 31, 3, 339-411 (1978) · Zbl 0369.53059 [64] Yau, Shing Tung, On the curvature of compact Hermitian manifolds, Invent. Math., 25, 213-239 (1974) · Zbl 0299.53039 [65] Zhang, Weiping, Lectures on Chern-Weil theory and Witten deformations, Nankai Tracts in Mathematics 4, xii+117 pp. (2001), World Scientific Publishing Co., Inc., River Edge, NJ · Zbl 0993.58014 [66] Zheng, Fangyang, Complex differential geometry, AMS/IP Studies in Advanced Mathematics 18, xii+264 pp. (2000), American Mathematical Society, Providence, RI; International Press, Boston, MA · Zbl 0984.53002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.