×

Spectral density estimates with partial symmetries and an application to Bahri-Lions-type results. (English) Zbl 1372.35078

The boundary value problem \(-\Delta u=|u|^{p-2}u+f\) in \(\Omega\), \(u=u_0\) on \(\partial \Omega\), where \(\Omega\) is a domain in \(\mathbb R^N\) (\(N\geq 3\)) with a sufficiently smooth boundary \(\partial \Omega\), is discussed. The authors consider conditions on \(p\), \(f\) and \(u_0\) when the problem has infinitely many solutions extending the known results for \(f=0\) and \(u_0=0\). The authors determine the maximal possible \(p\) employing improved Sobolev embeddings for spaces of invariant functions. Spectral density estimates for Schrödinger operators are used.

MSC:

35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35J61 Semilinear elliptic equations
Full Text: DOI

References:

[1] Bahri, A., Lions, P.L.: Morse index of some min-max critical points. I. Application to multiplicity results. Commun. Pure Appl. Math. 41(8), 1027-1037 (1988). doi:10.1002/cpa.3160410803 · Zbl 0645.58013
[2] Tanaka, K.: Morse indices at critical points related to the symmetric mountain pass theorem and applications. Commun. Partial Differ. Equ. 14(1), 99-128 (1989). doi:10.1080/03605308908820592 · Zbl 0669.34035
[3] Bahri, A., Berestycki, H.: A perturbation method in critical point theory and applications. Trans. Am. Math. Soc. 267(1), 1-32 (1981). doi:10.2307/1998565 · Zbl 0476.35030
[4] Rabinowitz, P.H.: Multiple critical points of perturbed symmetric functionals. Trans. Am. Math. Soc. 272(2), 753-769 (1982). doi:10.2307/1998726 · Zbl 0589.35004 · doi:10.2307/1998726
[5] Struwe, M.: Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems. Manuscr. Math. 32(3-4), 335-364 (1980). doi:10.1007/BF01299609 · Zbl 0456.35031 · doi:10.1007/BF01299609
[6] Bahri, A.: Topological results on a certain class of functionals and application. J. Funct. Anal. 41(3), 397-427 (1981). doi:10.1016/0022-1236(81)90083-5 · Zbl 0499.35050 · doi:10.1016/0022-1236(81)90083-5
[7] Bartolo, R., Candela, A.M., Salvatore, A.: Infinitely many solutions for a perturbed Schrödinger equation. Discrete Contin. Dyn. Syst. (Dynamical systems, differential equations and applications. 10th AIMS Conference. Suppl.), 94-102 (2015). doi:10.3934/proc.2015.0094 · Zbl 1334.35323
[8] Hirano, N., Zou, W.: A perturbation method for multiple sign-changing solutions. Calc. Var. Partial Differ. Equ. 37(1-2), 87-98 (2010). doi:10.1007/s00526-009-0253-2 · Zbl 1186.35041 · doi:10.1007/s00526-009-0253-2
[9] Li, Y., Liu, Z., Zhao, C.: Nodal solutions of a perturbed elliptic problem. Topol. Methods Nonlinear Anal. 32(1), 49-68 (2008) · Zbl 1173.35497
[10] Li, S., Liu, Z.: Perturbations from symmetric elliptic boundary value problems. J. Differ. Equ. 185(1), 271-280 (2002). doi:10.1006/jdeq.2001.4160 · Zbl 1032.35066 · doi:10.1006/jdeq.2001.4160
[11] Magrone, P., Mataloni, S.: Multiple solutions for perturbed indefinite semilinear elliptic equations. Adv. Differ. Equ. 8(9), 1107-1124 (2003) · Zbl 1290.35102
[12] Tarsi, C.: Perturbation from symmetry and multiplicity of solutions for elliptic problems with subcritical exponential growth in \[\mathbb{R}^2\] R2. Commun. Pure Appl. Anal. 7(2), 445-456 (2008). doi:10.3934/cpaa.2008.7.445 · Zbl 1168.35369 · doi:10.3934/cpaa.2008.7.445
[13] Tehrani, H.T.: Infinitely many solutions for indefinite semilinear elliptic equations without symmetry. Commun. Partial Differ. Equ. 21(3-4), 541-557 (1996) · Zbl 0855.35044 · doi:10.1080/03605309608821196
[14] Li, Y.Y.: Existence of infinitely many critical values of some nonsymmetric functionals. J. Differ. Equ. 95(1), 140-153 (1992). doi:10.1016/0022-0396(92)90046-P · Zbl 0765.35005 · doi:10.1016/0022-0396(92)90046-P
[15] Salvatore, A.: Multiple solutions for perturbed elliptic equations in unbounded domains. Adv. Nonlinear Stud. 3(1), 1-23 (2003) · Zbl 1221.35400 · doi:10.1515/ans-2003-0101
[16] Bolle, P., Ghoussoub, N., Tehrani, H.: The multiplicity of solutions in non-homogeneous boundary value problems. Manuscr. Math. 101(3), 325-350 (2000) · Zbl 0963.35001 · doi:10.1007/s002290050219
[17] Candela, A.M., Salvatore, A.: Multiplicity results of an elliptic equation with non-homogeneous boundary conditions. Topol. Methods Nonlinear Anal. 11(1), 1-18 (1998) · Zbl 0913.35046
[18] Struwe, M.: Superlinear elliptic boundary value problems with rotational symmetry. Arch. Math. (Basel) 39(3), 233-240 (1982). doi:10.1007/BF01899529 · Zbl 0496.35034 · doi:10.1007/BF01899529
[19] Castro, A., Kurepa, A.: Infinitely many radially symmetric solutions to a superlinear Dirichlet problem in a ball. Proc. Am. Math. Soc. 101(1), 57-64 (1987). doi:10.2307/2046550 · Zbl 0656.35048 · doi:10.2307/2046550
[20] Kazdan, J.L., Warner, F.W.: Remarks on some quasilinear elliptic equations. Commun. Pure Appl. Math. 28(5), 567-597 (1975) · Zbl 0325.35038 · doi:10.1002/cpa.3160280502
[21] Candela, A.M., Palmieri, G., Salvatore, A.: Radial solutions of semilinear elliptic equations with broken symmetry. Topol. Methods Nonlinear Anal. 27(1), 117-132 (2006) · Zbl 1135.35339
[22] Barile, S., Salvatore, A.: Multiplicity results for some perturbed elliptic problems in unbounded domains with non-homogeneous boundary conditions. Nonlinear Anal. 110, 47-60 (2014). doi:10.1016/j.na.2014.07.018 · Zbl 1301.35013 · doi:10.1016/j.na.2014.07.018
[23] Barile, S., Salvatore, A.: Radial solutions of semilinear elliptic equations with broken symmetry on unbounded domains. Discrete Contin. Dyn. Syst. (Dynamical systems, differential equations and applications. 9th AIMS Conference. Suppl.), 41-49 (2013). doi:10.3934/proc.2013.2013.41 · Zbl 1305.35029
[24] Clapp, M., Hernández-Martínez, E.: Infinitely many solutions of elliptic problems with perturbed symmetries in symmetric domains. Adv. Nonlinear Stud. 6(2), 309-322 (2006) · Zbl 1229.35045 · doi:10.1515/ans-2006-0211
[25] Brüning, J., Heintze, E.: Representations of compact Lie groups and elliptic operators. Invent. Math. 50(2), 169-203 (1978/1979). doi:10.1007/BF01390288 · Zbl 0392.58015
[26] Donnelly, \[H.: G\] G-spaces, the asymptotic splitting of \[L^2(M)\] L2(M) into irreducibles. Math. Ann. 237(1), 23-40 (1978). doi:10.1007/BF01351556 · Zbl 0368.53028
[27] Barile, S., Salvatore, A.: Multiplicity results for some perturbed and unperturbed “zero mass” elliptic problems in unbounded cylinders. In: Analysis and Topology in Nonlinear Differential Equations, Progr. Nonlinear Differential Equations Appl., vol. 85, pp. 39-59. Birkhäuser/Springer, Cham (2014) · Zbl 1319.35039
[28] Bolle, P.: On the Bolza problem. J. Differ. Equ. 152(2), 274-288 (1999) · Zbl 0923.34025 · doi:10.1006/jdeq.1998.3484
[29] Li, P., Yau, S.T.: On the Schrödinger equation and the eigenvalue problem. Commun. Math. Phys. 88(3), 309-318 (1983). http://projecteuclid.org/getRecord?id=euclid.cmp/1103922378 · Zbl 0554.35029
[30] Blanchard, P., Stubbe, J., Rezende, J.: New estimates on the number of bound states of Schrödinger operators. Lett. Math. Phys. 14(3), 215-225 (1987). doi:10.1007/BF00416851 · Zbl 0641.35016
[31] Hebey, E., Vaugon, M.: Sobolev spaces in the presence of symmetries. J. Math. Pures Appl. (9) 76(10), 859-881 (1997). doi:10.1016/S0021-7824(97)89975-8 · Zbl 0886.58003 · doi:10.1016/S0021-7824(97)89975-8
[32] Wang, W.: Sobolev embeddings involving symmetry. Bull. Sci. Math. 130(4), 269-278 (2006). doi:10.1016/j.bulsci.2005.05.004 · Zbl 1115.46031 · doi:10.1016/j.bulsci.2005.05.004
[33] Lieb, E.: Bounds on the eigenvalues of the Laplace and Schroedinger operators. Bull. Am. Math. Soc. 82(5), 751-753 (1976) · Zbl 0329.35018 · doi:10.1090/S0002-9904-1976-14149-3
[34] Cwikel, M.: Weak type estimates for singular values and the number of bound states of Schrödinger operators. Ann. Math. (2) 106(1), 93-100 (1977) · Zbl 0362.47006 · doi:10.2307/1971160
[35] Rosenbljum, G.: Distribution of the discrete spectrum of singular differential operators. Sov. Math. Dokl. 13, 245-249 (1972) · Zbl 0249.35069
[36] Bargmann, V.: On the number of bound states in a central field of force. Proc. Natl. Acad. Sci. USA 38, 961-966 (1952) · Zbl 0048.21903 · doi:10.1073/pnas.38.11.961
[37] Schmidt, K.M.: A short proof for Bargmann-type inequalities. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 458(2027), 2829-2832 (2002). doi:10.1098/rspa.2002.1021 · Zbl 1045.34053 · doi:10.1098/rspa.2002.1021
[38] Clapp, M., Hernández-Linares, S., Hernández-Martínez, E.: Linking-preserving perturbations of symmetric functionals. J. Differ. Equ. 185(1), 181-199 (2002). doi:10.1006/jdeq.2002.4170 · Zbl 1247.58012
[39] Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, vol. 65. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence (1986) · Zbl 0609.58002
[40] Rudin, W.: Functional Analysis. International Series in Pure and Applied Mathematics, 2nd edn. McGraw-Hill Inc., New York (1991) · Zbl 0867.46001
[41] Davies, E.B.: Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92. Cambridge University Press, Cambridge (1989). doi:10.1017/CBO9780511566158 · Zbl 0699.35006
[42] König, H.: Eigenvalue distribution of compact operators, Operator Theory: Advances and Applications, vol. 16. Birkhäuser Verlag, Basel (1986). doi:10.1007/978-3-0348-6278-3 · Zbl 0618.47013
[43] Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, 2nd edn. Springer, Berlin (1983) · Zbl 0562.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.