Belchior, P.; Bueno, H.; Miyagaki, O. H.; Pereira, G. A. Remarks about a fractional Choquard equation: ground state, regularity and polynomial decay. (English) Zbl 1373.35111 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 164, 38-53 (2017). Summary: With appropriate hypotheses on the nonlinearity \(f\), we prove the existence of a ground state solution \(u\) for the problem \[ \biggl\{ (-\Delta_p)^s u+A|u|^{p-2}u=\left( \frac{1}{|x|^\mu}\ast F(u) \right) f(u)\quad \text{in}\; \mathbb{R}^N\text{,} \] where \(0<\mu<N\), \((-\Delta_p)^s\) stands for the \((s,p)\)-Laplacian operator, \(F\) is the primitive of \(f\) and \(A\) is a positive constant. When \(\mu<p\), we also show that \(u\in L^\infty (\mathbb{R}^N)\cap C^0(\mathbb{R}^N)\) and has polynomial decay. Cited in 42 Documents MSC: 35J20 Variational methods for second-order elliptic equations 35Q55 NLS equations (nonlinear Schrödinger equations) 35B38 Critical points of functionals in context of PDEs (e.g., energy functionals) 35R11 Fractional partial differential equations Keywords:variational methods; polynomial decay; fractional Laplacian; Choquard equations × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Ackermann, N., On a periodic Schrödinger equation with nonlocal superlinear part, Math. Z., 248, 423-443 (2004) · Zbl 1059.35037 [2] Alves, C. O.; Yang, M., Existence of semiclassical ground state solutions for a generalized Choquard equation, J. Differential Equations, 257, 4133-4164 (2014) · Zbl 1309.35036 [3] Alves, C. O.; Yang, M., Investigating the multiplicity and concentration behaviour of solutions for a quasi-linear Choquard equation via the penalization method, Proc. Roy. Soc. Edinburg Sect. A, 146, 23-58 (2016) · Zbl 1366.35050 [4] Applebaum, D., Lévy processes, from probability fo finance and quantum groups, Notices Amer. Math. Soc., 51, 1336-1347 (2004) · Zbl 1053.60046 [5] Brasco, L.; Mosconi, S.; Squassina, M., Optimal Decay of extremal for the fractional Sobolev Inequality, Calc. Var., 55, 23 (2016) · Zbl 1350.46024 [7] Bucur, C.; Valdinoci, E., Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, Vol. 20 (2016), Springer International Publishing: Springer International Publishing Bologna · Zbl 1377.35002 [8] Cabré, X.; Sire, Y., Nonlinear equations for fractional Laplacians I: regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. Henri Poincaré Nonlinear Anal., 31, 23-53 (2014) · Zbl 1286.35248 [9] Caffarelli, L. A., Nonlocal equations, drifts and games, Non. Partial Diff. Eq. Abel Symp., 7, 37-52 (2012) · Zbl 1266.35060 [10] Cao, P.; Wang, J.; Zou, W., On the standing waves for nonlinear Hartree equation with confining potential, J. Math. Phys., 53, 003702-27 (2012) · Zbl 1274.81070 [11] Chen, Y.-H.; Liu, C.-G., Ground state solutions for non-autonomous fractional Choquard equations, Nonlinearity, 29, 6, 1827-1842 (2016) · Zbl 1381.35213 [12] Cingolani, S.; Secchi, S., Semiclassical analysis for pseudo-relativistic Hartree equations, J. Differential Equations, 258, 12, 4156-4179 (2015) · Zbl 1319.35204 [13] d’Avenia, P.; Siciliano, G.; Squassina, M., On fractional Choquard equations, Math. Models Methods Appl. Sci., 25, 8, 1447-1476 (2015) · Zbl 1323.35205 [14] Demengel, F.; Demengel, G., Functional Spaces for the Theory of Elliptic Partial Differential Equations (2012), Springer: Springer London · Zbl 1239.46001 [15] Di Nezza, E.; Palatucci, G.; Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 5, 521-573 (2012) · Zbl 1252.46023 [16] Felmer, P.; Quaas, A.; Tan, J., Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 142, 6, 1237-1262 (2012) · Zbl 1290.35308 [17] Franzina, G.; Palatucci, G., Fractional p-eigenvalues, Riv. Mat. Univ. Parma, 5, 315-328 (2014) [18] Ghimenti, M.; Moroz, V.; Van Schaftingen, J., Least action nodal solutions for the quadratic Choquard equation, Proc. Amer. Math. Soc., 145, 737-747 (2017) · Zbl 1355.35079 [19] Iannizzotto, A.; Liu, S.; Perera, K.; Squassina, M., Existence results for fractional \(p\)-Laplacian problems via Morse theory, Adv. Calc. Var., 9, 101-125 (2016) · Zbl 1515.35318 [20] Iannizzotto, A.; Mosconi, S.; Squassina, M., Global Hölder regularity for the fractional p-Laplacian, Rev. Mat. Iberoam., 32, 4, 1353-1392 (2016) · Zbl 1433.35447 [21] Iannizzotto, A.; Squassina, M., Weyl-type laws for fractional p-eigenvalue problems, Asymptot. Anal., 88, 233-245 (2014) · Zbl 1296.35103 [22] Kavian, O., Introduction à La Théorie Des Points Critiques (1993), Springer-Verlag: Springer-Verlag Berlin · Zbl 0797.58005 [23] Lehrer, R.; Maia, L. A.; Squassina, M., On fractional p-Laplacian problems with weight, Differential Integral Equations, 28, 1-2, 15-28 (2015) · Zbl 1363.34009 [24] Lieb, E. H., Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math., 57, 2, 93-105 (1996/97) · Zbl 0369.35022 [25] Lindgren, E.; Lindqvist, P., Fractional eigenvalues, Calc. Var. Partial Differential Equations, 49, 795-826 (2014) · Zbl 1292.35193 [26] Lions, P. L., The Choquard equation and related questions, Nonlinear Anal., 4, 1063-1072 (1980) · Zbl 0453.47042 [27] Lions, P. L., Compactness and topological methods for some nonlinear variational problems of mathematical physics, Nonlinear Probl. Present Future, 17-34 (1982) · Zbl 0496.35079 [28] Lions, P. L., The concentration-compactness principle in the calculus of variations The limit case. I, Rev. Mat. Iberoam., 1, 1, 145-201 (1985) · Zbl 0704.49005 [29] Ma, L.; Zhao, L., Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195, 455-467 (2010) · Zbl 1185.35260 [30] Menzala, G. P., On regular solutions of a nonlinear equation of Choquard’s type, Proc. Roy. Soc. Edinburgh Sect. A, 86, 291-301 (1980) · Zbl 0449.35034 [31] Moroz, V.; Van Schaftingen, J., A guide to the Choquard equation, J. Fixed Point Theory Appl. (2016) [32] Moroz, V.; Van Schaftingen, J., Ground states of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265, 153-184 (2013) · Zbl 1285.35048 [33] Moroz, V.; Van Schaftingen, J., Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc., 367, 6557-6579 (2015) · Zbl 1325.35052 [34] Mosconi, S.; Perera, K.; Squassina, M.; Yang, Y., The Brezis-Nirenberg problem for the fractional p-Laplacian, Calc. Var. Partial Differential Equations, 55, 105 (2016), 25pp · Zbl 1361.35198 [35] Rabinowitz, P. H., On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43, 2, 270-291 (1992) · Zbl 0763.35087 [36] Ros-Oton, X.; Serra, J., The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl., 101, 275-302 (2014) · Zbl 1285.35020 [37] Ros-Oton, X.; Serra, J., The Pohozaev identity for the fractional Laplacian, Arch. Ration. Mech. Anal., 213, 587-628 (2014) · Zbl 1361.35199 [38] Servadei, R.; Valdinoci, E., Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389, 887-898 (2012) · Zbl 1234.35291 [39] Servadei, R.; Valdinoci, E., The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367, 67-102 (2015) · Zbl 1323.35202 [41] Shen, Z.-F.; Gao, F.-S.; Yang, M.-B., Ground states for nonlinear fractional Choquard equations with general nonlinearities, Math. Methods Appl. Sci., 39, 14, 4082-4098 (2016) · Zbl 1344.35168 [42] Van Schaftingen, J.; Xia, J., Choquard equations under confining external potentials, Nonlinear Differential Equations Appl., 1 (2016) · Zbl 1378.35144 [43] Willem, M., Minimax Theorems (1996), Birkhäuser Boston: Birkhäuser Boston Basel, Berlin · Zbl 0856.49001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.