×

Compressed sensing construction for underdetermined source separation. (English) Zbl 1373.94752

Summary: Underdetermined blind source separation based on compressed sensing (CS) has already been proven to be an effective mechanism from an experimental viewpoint. In this study, we develop a theoretical result and show that, under a certain sparsity constraint for the restricted isometry property, the accuracy of CS when retrieving sources is guaranteed. This theoretical result can be regarded as a generalization of the blocked polynomial deterministic matrix theory and has been confirmed using numerical examples.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
94A13 Detection theory in information and communication theory

Software:

CoSaMP
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] T. Blumensath, M.E. Davies, Compressed sensing and source separation, in Proceedings of the International Conference on Independent Component Analysis and Blind Source Separation, pp. 341-348 (2007) · Zbl 1173.94353
[2] E. Candes, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly in complete frequency information. IEEE Trans. Inf. Theory 52(2), 489-509 (2006) · Zbl 1231.94017 · doi:10.1109/TIT.2005.862083
[3] R.A. Devore, Deterministic constructions of compressed sensing matrices. J. Complex. 23(4-6), 918-925 (2007) · Zbl 1134.94312 · doi:10.1016/j.jco.2007.04.002
[4] T.B. Dong, Y.K. Lei, J.S. Yang, An algorithm for underdetermined mixing matrix estimation. Neurocomputing 104, 26-34 (2013) · doi:10.1016/j.neucom.2012.09.018
[5] D.L. Donoho, Y. Tsaig, I. Drori, J.L. Starck, Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Trans. Inf. Theory 58(2), 1094-1121 (2012) · Zbl 1365.94069 · doi:10.1109/TIT.2011.2173241
[6] A. Flinth, A geometrical stability condition for compressed sensing. Linear Algebra Appl. 504, 406-432 (2016) · Zbl 1350.94018 · doi:10.1016/j.laa.2016.04.017
[7] Z.Y. He, S.L. Xie, L. Zhang, A. Cichocki, A note on Lewicki-Sejnowski gradient for learning overcomplete representation. Neural Comput. 20(3), 636-643 (2008) · Zbl 1140.68433 · doi:10.1162/neco.2007.07-06-296
[8] R. Holger, S. Karin, V. Pierre, Compressed sensing and redundant dictionaries. IEEE Trans. Inf. Theory 54(5), 2210-2219 (2008) · Zbl 1332.94022 · doi:10.1109/TIT.2008.920190
[9] X.B. Li, R.Z. Zhao, S.H. Hu, Blocked polynomial deterministic matrix for compressed sensing, in Proceedings of the International Conference on Wireless Communications, Networking and Mobile Computing, pp. 1-4 (2010) · Zbl 1231.94017
[10] F.M. Naini, H. Mohimani, M. Zadeh, C. Jutten, Estimating the mixing matrix in space component analysis based on partial k-dimensional subspace clustering. Neurocomputing 71, 2330-2343 (2008) · doi:10.1016/j.neucom.2007.07.035
[11] D. Needell, J.A. Tropp, CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301-321 (2008) · Zbl 1163.94003 · doi:10.1016/j.acha.2008.07.002
[12] D. Needell, R. Vershynin, Signal recovery from inaccurate and incomplete measurements via regularized orthogonal matching pursuit. IEEE J. Sel. Top. Signal Process. 4(2), 310-316 (2010) · doi:10.1109/JSTSP.2010.2042412
[13] R.C. Shi, F. Wei, Matrix Analysis, 2nd edn. (Beijing Institute of Technology Press, Beijing, 2008)
[14] A.G. Shwetha, V.S. Saroja, Compressed sensing reconstruction of an audio signal using OMP. Int. J. Adv. Comput. Res. 5(18), 75-79 (2015)
[15] Y.C. Sun, J. Xin, Underdetermined sparse blind source separation of nonnegative and partially overlapped data. SIAM J. Sci. Comput. 33(4), 2063-2094 (2011) · Zbl 1234.94017 · doi:10.1137/100788434
[16] J. Wang, S. Kwon, B. Shim, Generalized orthogonal matching pursuit. IEEE Trans. Signal Process. 60(12), 6202-6216 (2012) · Zbl 1393.94479 · doi:10.1109/TSP.2012.2218810
[17] J. Wang, S. Kwon, P. Li, B. Shim, Recovery of sparse signals via generalized orthogonal matching pursuit: a new analysis. IEEE Trans. Signal Process. 64(4), 1076-1089 (2016) · Zbl 1412.94098 · doi:10.1109/TSP.2015.2498132
[18] K. Wei, Fast iterative hard thresholding for compressed sensing. IEEE Signal Process. Lett. 22(5), 593-597 (2015) · doi:10.1109/LSP.2014.2364851
[19] Y.J. Xie, Y.F. Ke, C.F. Ma, The modified accelerated bergman method for regularized basis pursuit problem. J. Inequal. Appl. 2014(1), 1-17 (2014) · Zbl 1372.05020 · doi:10.1186/1029-242X-2014-1
[20] T. Xu, W.W. Wang, A compressed sensing approach for underdetermined blind audio source separation with sparse representation, in Proceedings of the IEEE International Workshop on Statistical Signal Processing, pp. 493-496 (2009)
[21] J.D. Xu, X.C. Yu, D. Hu, L.B. Zhang, A fast mixing matrix estimation method in the wavelet domain. Signal Process. 95, 58-66 (2014) · doi:10.1016/j.sigpro.2013.08.014
[22] T. Xu, W.W. Wang, A block-based compressed sensing method for underdetermined blind speech separation incorporating binary mask, in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP2010), pp. 2022-2025 (2010) · Zbl 1234.94017
[23] E. Yonina, K. Gitta, Compressed Sensing Theory and Applications (Cambridge University Press, Cambridge, 2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.