×

Analysis of a temperature- and rainfall-dependent model for malaria transmission dynamics. (English) Zbl 1377.92097

Summary: A new non-autonomous model is designed and used to assess the impact of variability in temperature and rainfall on the transmission dynamics of malaria in a population. In addition to adding age-structure in the host population and the dynamics of immature malaria mosquitoes, a notable feature of the new model is that recovered individuals do not revert to wholly-susceptible class (that is, recovered individuals enjoy reduced susceptibility to new malaria infection). In the absence of disease-induced mortality, the disease-free solution of the model is shown to be globally-asymptotically stable when the associated reproduction ratio is less than unity. The model has at least one positive periodic solution when the reproduction ratio exceeds unity (and the disease persists in the community in this case). Detailed uncertainty and sensitivity analysis, using mean monthly temperature and rainfall data from KwaZulu-Natal province of South Africa, shows that the top three parameters of the model that have the most influence on the disease transmission dynamics are the mosquito carrying capacity, transmission probability per contact for susceptible mosquitoes and human recovery rate. Numerical simulations of the model show that, for the KwaZulu-Natal province, malaria burden increases with increasing mean monthly temperature and rainfall in the ranges ([17-25]\(^\circ \)C and [32-110] mm), respectively (and decreases with decreasing mean monthly temperature and rainfall values). In particular, transmission is maximized for mean monthly temperature and rainfall in the ranges \([21-25]^\circ C\) and [95-125] mm. This occurs for a six-month period in KwaZulu-Natal (hence, this study suggests that anti-malaria control efforts should be intensified during this period). It is shown, for the fixed mean monthly temperature of KwaZulu-Natal, that malaria burden decreases whenever the amount of rainfall exceeds a certain threshold value. It is further shown (through sensitivity analysis and numerical simulations) that incorporating host age-structure and reduced susceptibility due to prior malaria infection has marginal effect on the transmission dynamics of the disease.

MSC:

92D30 Epidemiology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agusto, F. B.; Gumel, A. B.; Parham, P. E., Qualitative assessment of the role of temperature variations on malaria transmission dynamics, J. Biol. Syst., 23, 4, 1-34 (2015) · Zbl 1343.92455
[2] Alonso, D.; Bouma, M. J.; Pascual, M., Epidemic malaria and warmer temperatures in recent decades in an east african highland, Proc. R. Soc. B, 278, 1661-1669 (2011)
[3] Baeza, A.; Bouma, M. J.; Dhiman, R.; Pascual, M., Malaria control under unstable dynamics: reactive vs. climate-based strategies, Acta Trop., 129, 42-51 (2014)
[4] Beck-Johnson, L. M.; Nelson, W. A.; Paaijmans, K. P.; Read, A. F.; Thomas, M. B.; Bjornstad, O. N., The effect of temperature on anopheles mosquito population dynamics and the potential for malaria transmission, PLOS ONE, 8, 11 (2013)
[5] Blanford, J. I.; Blanford, S.; Crane, R. G.; Mann, M. E.; Paaijmans, K. P.; Schreiber, K. V.; Thomas, M. B., Implications of temperature variation for malaria parasite development across africa, Sci. Rep., 1300 (2013)
[6] Blower, S. M.; Dowlatabadi, H., Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example, Int. Stat. Rev., 2, 229-243 (1994) · Zbl 0825.62860
[7] Bouma, M. J.; Baeza, A.; terVeen, A.; Pascual, M., Global malaria maps and climate change: a focus on east african highlands, Trends Parasitol., 27, 421-422 (2011)
[8] Bowman, C.; Gumel, A. B.; Van den Driessche, P.; Wu, J.; Zhu, H., A mathematical model for assessing control strategies against west nile virus, Bull. Math. Biol., 67, 1107-1133 (2005) · Zbl 1334.92392
[9] Boyd, M. F., Epidemiology of Malaria: Factors Related to the Definitive Host. In Malariology: A Comprehensive Survey of all Aspects of this Group of Diseases from a Global Standpoint (ed. MF Boyd), 608-697 (1949), PA: W.B. Saunders Company: PA: W.B. Saunders Company Philadelphia
[10] Cash, B.; Rodó, X.; Ballester, J.; Bouma, M. J.; Baeza, A.; Dhiman, R. C.; Pascual, M., Malaria epidemics highlight the influence of the tropical south atlantic on the indian monsoons, Nat. Clim. Chang., 3 (2013)
[11] Castillo-Chavez, C. C.; Song, B., Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 1, 361-404 (2004) · Zbl 1060.92041
[12] Chitnis, N.; Cushing, J. M.; Hyman, J. M., Bifurcation analysis of a mathematical model for malaria transmission, SIAM J. Appl. Math., 67, 24-45 (2006) · Zbl 1107.92047
[13] Craig, M. H.; Snow, R. W.; Le Sueur, D., Scholarly articles for a climate-based distribution model of malaria transmission in sub-saharan africa, Parasitol. Today, 15, 149-158 (2005)
[14] Dentinova, T. S., Age-grouping methods in diptera of medical importance (1962), World Health Organisation: World Health Organisation Geneva, Switzerland
[15] Diekmann, O.; Heesterbeek, J.; Metz, J., On the definition and the computation of the basic reproduction ratio \(r_0\) in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28, 365-382 (1990) · Zbl 0726.92018
[16] Dumont, Y.; Chiroleu, F., Vector control for the chikungunya disease, Math. Biosci. Eng., 7, 105-111 (2010) · Zbl 1259.92071
[18] Edwin, M.; Robert, C., Modeling parasite transmission and control, Adv. Exp. Med. Biol., 673 (2010)
[19] Egbendewe-Mondzozo, A.; Musumba, M.; McCarl, B. A.; Wu, X., Climate change and vector-borne diseases: an economic impact analysis of malaria in africa, Int. J. Environ. Res. Public Health, 8, 913-930 (2011)
[20] Elbasha, E. H.; Gumel, A. B., Theoretical assessment of public health impact of imperfect prophylactic HIV-1 vaccines with therapeutic benefits, Bull. Math. Biol., 7, 577-614 (2006) · Zbl 1334.91060
[21] Faye, O.; Gaye, O.; Fontenille, D.; Hébrard, G.; Konate, L.; Sy, N.; Herve, J. P.; Toure, Y. T.; Diallo, S.; Molez, J. F., Malaria decrease and drought in the niayes area of senegal, Sante, 5, 299-305 (1995)
[22] Forouzannia, F.; Gumel, A. B., Mathematical analysis of an age-structured model for malaria transmission dynamics, Math. Biosci., 247, 80-94 (2014) · Zbl 1282.92018
[23] Garba, S. M.; Gumel, A. B.; Abu Bakar, M. R., Backward bifurcations in dengue transmission dynamics, Math. Biosci., 215, 11-25 (2008) · Zbl 1156.92036
[24] Garms, R.; Walsh, J. F.; Davies, J. B., Studies on the reinvasion of the onchocerciasis control programme in the volta river basin by simulium damnosum s.i. with emphasis on the south-western areas, Tropenmedizin Parasitol., 30, 345-362 (1979)
[25] Githeko, A. K.; Lindsay, S. W.; Confalonieri, U. E.; Patz, J. A., Climate change and vector-borne diseases: a regional analysis, Bull. World Health Organ., 78, 9 (2000)
[27] Horsfall, W. R., Mosquitoes: their bionomics and relation to disease (1955), Hafner Publishing Company: Hafner Publishing Company New York
[28] Hoshen, M. B.; Morse, A. P., A weather-driven model of malaria transmission, Malar. J., 3, 32 (2004)
[29] Imbahale, S. S.; Paaijmans, K. P.; Mukabana, W. R.; van Lammeren, R.; Githeko, A. K.; Takken, W., A longitudinal study on anopheles mosquito larval abundance in distinct geographical and environmental settings in western kenya, Malar. J., 10, 81 (2011)
[30] Jepson, W. F.; Moutia, A.; Courtois, C., The malaria problem in mauritius: the bionomics of mauritian anophelines, Bull. Entomol., 38, 177-208 (1947)
[31] Lafferty, K. D., The ecology of climate change and infectious diseases, Ecology, 90, 888-900 (2009)
[34] Laperriere, V.; Brugger, K.; Rubel, F., Simulation of the seasonal cycles of bird, equine and human west nile virus cases, Prev. Vet. Med., 88, 99-110 (2011)
[35] Lou, Y.; Zhao, X.-Q., A climate-based malaria transmission model with structured vector population, SIAM J. Appl. Math., 70, 2023-2044 (2010) · Zbl 1221.34224
[36] Lunde, T. M.; Bayoh, M. N.; Lindtjorn, B., How malaria models relate temperature to malaria transmission, Parasites Vectors, 6, 20 (2013)
[37] Macdonald, G., The Epidemiology and Control of Malaria (1957), Oxford University Press: Oxford University Press London, UK
[38] Magal, P.; Zhao, X.-Q., Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37, 251-275 (2005) · Zbl 1128.37016
[40] Marino, S.; Hogue, I. B.; Ray, C. J.; Kirschner, D. E., A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254, 178-196 (2008) · Zbl 1400.92013
[41] Martens, W. J., Health impacts of climate change and ozone depletion: an ecoepidemiologic modeling approach, Environ. Health Perspect., 106, 241-251 (1998)
[42] Mckay, M. D.; Beckman, R. J.; Conover, W. J., Comparison of 3 methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21, 239-245 (1979) · Zbl 0415.62011
[43] McLeod, R. G.; Brewster, J. F.; Gumel, A. B.; Slonowsky, D. A., Sensitivity and uncertainty analyses for a SARS model with time-varying inputs and outputs, Math. Biosci. Eng., 2, 527-544 (2006) · Zbl 1092.92042
[44] Mordecai, E. A., Optimal temperature for malaria transmission is dramatically lower than previously predicted, Ecol. Lett., 16, 22-30 (2013)
[45] Murdock, C. C.; Paaijmans, K. P.; Bell, A. S.; King, J. G.; Hillyer, J. F.; Read, A. F.; Thomas, M. B., Complex effects of temperature on mosquito immune function, Proc. Biol. Sci./R. Soc., 279, 3357-3366 (2012)
[46] Murdock, C. C.; Paaijmans, K. P.; Cox-Foster, D.; Read, A. F.; Thomas, M. B., Rethinking vector immunology: the role of environmental temperature in shaping resistance, Nat. Rev. Microbiol., 10, 869-876 (2012)
[47] Niger, A. M.; Gumel, A. B., Mathematical analysis of the role of repeated exposure on malaria transmission dynamics, Differ. Equ. Dyn. Syst., 16, 251-287 (2008) · Zbl 1181.34056
[48] Paaijmans, K. P.; Imbahale, S. S.; Thomas, M. B.; Takken, W., Relevant microclimate for determining the development rate of malaria mosquitoes and possible implications of climate change, Malar. J., 9, 196 (2010)
[49] Paaijmans, K. P.; Wandago, M. O.; Githeko, A. K.; Takken, W., Unexpected high losses of anopheles gambiae larvae due to rainfall, PLOS One, 2 (2007)
[50] Parham, P. E.; Michael, E., Modelling climate change and malaria transmission, Adv. Exp. Med. Biol., 673, 184-199 (2010)
[51] Parham, P. E.; Michael, E., Modeling the effects of weather and climate change on malaria transmission, Environ. Health Perspect., 118, 620-626 (2010)
[52] Parham, P. E.; Pople, D.; Christiansen-Jucht, C.; Lindsay, S.; Hinsley, W.; Michael, E., Modeling the role of environmental variables on the population dynamics of the malaria vector anopheles gambiae sensu stricto, Malar. J., 11, 271 (2012)
[53] Parham, P. E.; Waldock, J.; Christophides, K. G.; Hemming, D.; Agusto, F.; Evans, J. K.; Fefferman, N.; Gaff, H.; Gumel, A. B.; LaDeau, S.; Lenhart, S.; Mickens, R. E.; Naumova, E.; Ostfeld, R.; Ready, P.; Thomas, M.; Velasco-Hernandez, J.; Michael, E., Climate, environmental, and socioeconomic change - weighing up the balance in vector-borne disease transmission, Philos. Trans. R. Soc. B, 370, 20130551 (2015)
[56] Rodó, X., Climate change and infectious diseases: can we meet the needs for better prediction?, Clim. Chang., 118, 625-640 (2013)
[57] Rogers, D. J.; Randolph, S. E., The global spread of malaria in a future, warmer world, Science, 289, 1763-1767 (2000)
[58] Rohr, J. R.; Dobson, A. P.; Johnson, P. T.; Kilpatrick, A. M.; Paull, S. H.; Raffel, T. R.; Ruiz-Moreno, D.; Thomas, M. B., Frontiers in climate change disease research, Trends Ecol. Evol., 26, 270-277 (2011)
[59] Rubel, F.; Brugger, K.; Hantel, M.; Chvala-Mannsberger, S.; Bakonyi, T.; Weissenbock, H.; Nowotny, N., Explaining usutu virus dynamics in austria: model development and calibration, Prev. Vet. Med., 85, 166-186 (2008)
[60] Safi, M. A.; Imran, M.; Gumel, A. B., Threshold dynamics of a non-autonomous SEIRS model with quarantine and isolation, Theory Biosci., 131, 19-30 (2012)
[61] Sinka, M. E., The dominant anopheles vectors of human malaria in africa, europe and the middle east: occurrence data, distribution maps and bionomic precis, Parasites Vectors, 3 (2010)
[62] Smith, H. L., Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, Am. Math. Soc., 41 (1995) · Zbl 0821.34003
[64] Sutherst, R. W., Global change and human vulnerability to vector-borne diseases, Clin. Microbiol. Rev., 17, 136-173 (2004)
[65] Suwanchaichinda, C.; Paskewitz, S. M., 1998 effects of larval nutrition, adult body size, and adult temperature on the ability of anopheles gambiae (diptera: Culicidae) to melanize sephadex beads, J. Med. Entomol., 35, 157-161 (1998)
[66] Tabachnick, W. J., Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world, J. Exp. Biol., 213, 946-954 (2010)
[67] Thieme, H. R., Convergence results and a poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30, 755-763 (1992) · Zbl 0761.34039
[68] Thieme, H. R., Persistence under relaxed point dissipativity (with application to an endemic model), SIAM J. Math. Anal., 24, 407-411 (1993) · Zbl 0774.34030
[70] Van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 29-48 (2002) · Zbl 1015.92036
[71] Wang, W.; Zhao, X.-Q., Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Differ. Equ., 20, 699-717 (2008) · Zbl 1157.34041
[73] Yang, H. M.; Macoris, M. L.; Galvani, K. C.; Andrighetti, M. T.; Wanderley, D. M., Assessing the effects of temperature on dengue transmission, Epidemiol. Infect., 137, 1179-1187 (2009)
[74] Yang, H. M.; Macoris, M. L.; Galvani, K. C.; Andrighetti, M. T.; Wanderley, D. M., Assessing the effects of temperature on the population of aedes aegypti, the vector of dengue, Epidemiol. Infect., 137, 1188-1202 (2009)
[75] Zhang, F.; Zhao, X.-Q., A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325, 496-516 (2007) · Zbl 1101.92046
[76] Zhang, Z.; Ding, T. W.; Huang, T.; Dong, Z., Qualitative theory of differential equations, Am. Math. Soc., 101, 461 (2006)
[77] Zhao, X.-Q., Uniform persistence and periodic coexistence states in infinite-dimensional periodic semiflows with applications, Can. Appl. Math. Q., 3, 473-495 (1995) · Zbl 0849.34034
[78] Zhao, X.-Q., Dynamical systems in population biology (2003), Springer, New York · Zbl 1023.37047
[79] Zhao, X.-Q., Permanence implies the existence of interior periodic solutions for FDEs, Int. J. Qual. Theory Differ. Equ. Appl., 2, 125-137 (2008) · Zbl 1263.34098
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.