Five-loop fermion anomalous dimension for a general gauge group from four-loop massless propagators. (English) Zbl 1378.81150

Summary: We extend the \( \mathcal{O}\left({\alpha}_s^5\right) \) result of the analytic calculation of the quark mass anomalous dimension in pQCD arXiv:1402.6611 to the case of a generic gauge group. We present explicit formulas which express the relevant renormalization constants in terms of four-loop massless propagators. We also use our result to shed new light on the old puzzle of the absence of even zetas in results of perturbative calculations for a class of physical observables.


81V05 Strong interaction, including quantum chromodynamics
81T15 Perturbative methods of renormalization applied to problems in quantum field theory


Forcer; LiteRed; FORM; RStar
Full Text: DOI arXiv


[1] P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Quark Mass and Field Anomalous Dimensions toOαs \[5 \mathcal{O}\left({\alpha}_s^5\right) \], JHEP10 (2014) 076 [arXiv:1402.6611] [INSPIRE].
[2] R. Tarrach, The Pole Mass in Perturbative QCD, Nucl. Phys.B 183 (1981) 384 [INSPIRE].
[3] O. Tarasov, Anomalous Dimensions Of Quark Masses In Three Loop Approximation, JINR-P2-82-900 (1982) [INSPIRE].
[4] S.A. Larin, The Renormalization of the axial anomaly in dimensional regularization, Phys. Lett.B 303 (1993) 113 [hep-ph/9302240] [INSPIRE].
[5] K.G. Chetyrkin, Quark mass anomalous dimension to O(αs4), Phys. Lett.B 404 (1997) 161 [hep-ph/9703278] [INSPIRE].
[6] J.A.M. Vermaseren, S.A. Larin and T. van Ritbergen, The four loop quark mass anomalous dimension and the invariant quark mass, Phys. Lett.B 405 (1997) 327 [hep-ph/9703284] [INSPIRE].
[7] P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Towards QCD running in 5 loops: quark mass anomalous dimension, PoS (RADCOR 2013) 056 [arXiv:1402.6606] [INSPIRE].
[8] P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Five-Loop Running of the QCD coupling constant, Phys. Rev. Lett.118 (2017) 082002 [arXiv:1606.08659] [INSPIRE].
[9] P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, The β-function of Quantum Chromodynamics and the effective Higgs-gluon-gluon coupling in five-loop order, PoS (LL2016) 010 [INSPIRE].
[10] K. Chetyrkin and J.H. Kühn, Precision Measurements in Electron-Positron Annihilation: Theory and Experiment, PoS (LL2016) 047 [arXiv:1607.08374] [INSPIRE]. · Zbl 1377.81103
[11] G. ’t Hooft and M.J.G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys.B 44 (1972) 189 [INSPIRE].
[12] W.A. Bardeen, A.J. Buras, D.W. Duke and T. Muta, Deep Inelastic Scattering Beyond the Leading Order in Asymptotically Free Gauge Theories, Phys. Rev.D 18 (1978) 3998 [INSPIRE].
[13] K.G. Chetyrkin, J.H. Kühn and A. Kwiatkowski, QCD corrections to the e+e−cross-section and the Z boson decay rate, hep-ph/9503396 [INSPIRE].
[14] A.A. Vladimirov, Method for Computing Renormalization Group Functions in Dimensional Renormalization Scheme, Theor. Math. Phys.43 (1980) 417 [INSPIRE].
[15] D.I. Kazakov, O.V. Tarasov and A.A. Vladimirov, Calculation of Critical Exponents by Quantum Field Theory Methods, Sov. Phys. JETP50 (1979) 521 [INSPIRE].
[16] K.G. Chetyrkin, A.L. Kataev and F.V. Tkachov, New Approach to Evaluation of Multiloop Feynman Integrals: The Gegenbauer Polynomial x Space Technique, Nucl. Phys.B 174 (1980) 345 [INSPIRE].
[17] O.V. Tarasov, A.A. Vladimirov and A.Yu. Zharkov, The Gell-Mann-Low Function of QCD in the Three Loop Approximation, Phys. Lett.B 93 (1980) 429 [INSPIRE].
[18] K.G. Chetyrkin and V.A. Smirnov, R∗operation corrected, Phys. Lett.B 144 (1984) 419 [INSPIRE].
[19] K.G. Chetyrkin, Corrections of order αs3to Rhadin pQCD with light gluinos, Phys. Lett.B 391 (1997) 402 [hep-ph/9608480] [INSPIRE]. · Zbl 1206.81090
[20] N.N. Bogoliubov and O.S. Parasiuk, On the Multiplication of the causal function in the quantum theory of fields, Acta Math.97 (1957) 227. · Zbl 0081.43302
[21] N. Bogoliubov and D. Shirkov, Introduction to the Theory of Quantized Fields, 3rd edition, John Wiley & Sons Inc. (1980).
[22] K.G. Chetyrkin, Combinatorics of R-, R−1- and R∗-operations and asymptotic expansions of Feynman integrals in the limit of large momenta and masses, arXiv:1701.08627 [INSPIRE].
[23] D.V. Batkovich and M. Kompaniets, Toolbox for multiloop Feynman diagrams calculations using R∗operation, J. Phys. Conf. Ser.608 (2015) 012068 [arXiv:1411.2618] [INSPIRE].
[24] P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys.105 (1993) 279 [INSPIRE]. · Zbl 0782.68091
[25] P.A. Baikov and K.G. Chetyrkin, Four Loop Massless Propagators: An Algebraic Evaluation of All Master Integrals, Nucl. Phys.B 837 (2010) 186 [arXiv:1004.1153] [INSPIRE]. · Zbl 1206.81087
[26] R.N. Lee, A.V. Smirnov and V.A. Smirnov, Master Integrals for Four-Loop Massless Propagators up to Transcendentality Weight Twelve, Nucl. Phys.B 856 (2012) 95 [arXiv:1108.0732] [INSPIRE]. · Zbl 1246.81057
[27] A.V. Smirnov and M. Tentyukov, Four Loop Massless Propagators: a Numerical Evaluation of All Master Integrals, Nucl. Phys.B 837 (2010) 40 [arXiv:1004.1149] [INSPIRE]. · Zbl 1206.81090
[28] R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
[29] R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser.523 (2014) 012059 [arXiv:1310.1145] [INSPIRE]. · Zbl 1373.81391
[30] T. Ueda, B. Ruijl and J.A.M. Vermaseren, Forcer: a FORM program for 4-loop massless propagators, PoS (LL2016) 070 [arXiv:1607.07318] [INSPIRE]. · Zbl 1380.81238
[31] F. Herzog, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, FORM, Diagrams and Topologies, PoS (LL2016) 073 [arXiv:1608.01834] [INSPIRE].
[32] P.A. Baikov, A practical criterion of irreducibility of multi-loop Feynman integrals, Phys. Lett.B 634 (2006) 325 [hep-ph/0507053] [INSPIRE]. · Zbl 1247.81314
[33] P.A. Baikov, Explicit solutions of the three loop vacuum integral recurrence relations, Phys. Lett.B 385 (1996) 404 [hep-ph/9603267] [INSPIRE].
[34] J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
[35] M. Steinhauser, T. Ueda and J.A.M. Vermaseren, Parallel versions of FORM and more, Nucl. Part. Phys. Proc.261-262 (2015) 45 [arXiv:1501.07119] [INSPIRE].
[36] W.E. Caswell and A.D. Kennedy, A simple approach to renormalization theory, Phys. Rev.D 25 (1982) 392 [INSPIRE]. · Zbl 1267.81251
[37] J.C. Collins, Normal Products in Dimensional Regularization, Nucl. Phys.B 92 (1975) 477 [INSPIRE].
[38] M. Misiak and M. Münz, Two loop mixing of dimension five flavor changing operators, Phys. Lett.B 344 (1995) 308 [hep-ph/9409454] [INSPIRE].
[39] T. van Ritbergen, J.A.M. Vermaseren and S.A. Larin, The Four loop β-function in quantum chromodynamics, Phys. Lett.B 400 (1997) 379 [hep-ph/9701390] [INSPIRE].
[40] K.G. Chetyrkin, M. Misiak and M. Münz, β-functions and anomalous dimensions up to three loops, Nucl. Phys.B 518 (1998) 473 [hep-ph/9711266] [INSPIRE]. · Zbl 0945.81064
[41] T. Luthe, A. Maier, P. Marquard and Y. Schröder, Five-loop quark mass and field anomalous dimensions for a general gauge group, JHEP01 (2017) 081 [arXiv:1612.05512] [INSPIRE]. · Zbl 1373.81391
[42] T. Luthe, A. Maier, P. Marquard and Y. Schröder, Complete renormalization of QCD at five loops, JHEP03 (2017) 020 [arXiv:1701.07068] [INSPIRE]. · Zbl 1377.81237
[43] A.A. Vladimirov, Methods of Multiloop Calculations and the Renormalization Group Analysis of ϕ4Theory, Theor. Math. Phys.36 (1979) 732 [INSPIRE].
[44] K.G. Chetyrkin, A.L. Kataev and F.V. Tkachov, Higher Order Corrections to σtot(e+e− → Hadrons) in Quantum Chromodynamics, Phys. Lett.B 85 (1979) 277 [INSPIRE].
[45] S.G. Gorishnii, A.L. Kataev and S.A. Larin, The O(αs3)-corrections to σtot(e+e− → hadrons) and Γ(τ− → ντ + hadrons) in QCD, Phys. Lett.B 259 (1991) 144 [INSPIRE].
[46] F. Herzog, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, The five-loop β-function of Yang-Mills theory with fermions, JHEP02 (2017) 090 [arXiv:1701.01404] [INSPIRE]. · Zbl 1377.81103
[47] T. van Ritbergen, A.N. Schellekens and J.A.M. Vermaseren, Group theory factors for Feynman diagrams, Int. J. Mod. Phys.A 14 (1999) 41 [hep-ph/9802376] [INSPIRE]. · Zbl 0924.22017
[48] P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Adler Function, Bjorken Sum Rule and the Crewther Relation to Order αs4in a General Gauge Theory, Phys. Rev. Lett.104 (2010) 132004 [arXiv:1001.3606] [INSPIRE].
[49] D.J. Broadhurst, Dimensionally continued multiloop gauge theory, hep-th/9909185 [INSPIRE].
[50] P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Scalar correlator atOαs \[4 \mathcal{O}\left({\alpha}_s^4\right) \], Higgs decay into b-quarks and bounds on the light quark masses, Phys. Rev. Lett.96 (2006) 012003 [hep-ph/0511063] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.