×

Exact solutions of the Vakhnenko-Parkes equation with complex method. (English) Zbl 1380.35064

Summary: We derive exact solutions to the Vakhnenko-Parkes equation by means of the complex method, and then we illustrate our main results by some computer simulations. We can apply the idea of this study to related nonlinear differential equation.

MSC:

35G25 Initial value problems for nonlinear higher-order PDEs
35C05 Solutions to PDEs in closed form
35C08 Soliton solutions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Mao, A.; Luan, S., Periodic solutions of an infinite-dimensional Hamiltonian system, Applied Mathematics and Computation, 201, 1-2, 800-804 (2008) · Zbl 1147.37033 · doi:10.1016/j.amc.2007.11.047
[2] Li, F.; Bai, Y., Uniform decay rates for nonlinear viscoelastic Marguerre-von Kármán equations, Journal of Mathematical Analysis and Applications, 351, 2, 522-535 (2009) · Zbl 1155.35058 · doi:10.1016/j.jmaa.2008.10.045
[3] Li, F., Limit behavior of the solution to nonlinear viscoelastic Marguerre-von Kármán shallow shell system, Journal of Differential Equations, 249, 6, 1241-1257 (2010) · Zbl 1425.74299 · doi:10.1016/j.jde.2010.05.005
[4] Guo, Y., Nontrivial solutions for boundary-value problems of nonlinear fractional differential equations, Bulletin of the Korean Mathematical Society, 47, 1, 81-87 (2010) · Zbl 1187.34008 · doi:10.4134/BKMS.2010.47.1.081
[5] Guo, Y., Solvability of boundary-value problems for nonlinear fractional differential equations, Ukrainian Mathematical Journal, 62, 9, 1409-1419 (2011) · Zbl 1240.34007 · doi:10.1007/s11253-011-0439-6
[6] Jiang, J.; Liu, L.; Wu, Y., Multiple positive solutions of singular fractional differential system involving Stieltjes integral conditions, Electronic Journal of Qualitative Theory of Differential Equations, 2012, 43 (2012) · Zbl 1340.34081
[7] Jiang, J.; Liu, L.; Wu, Y., Positive solutions for p-laplacian fourth-order differential system with integral boundary conditions, Discrete Dynamics in Nature and Society, 2012 (2012) · Zbl 1253.35065 · doi:10.1155/2012/293734
[8] Jiang, J.; Liu, L.; Wu, Y., Positive solutions to singular fractional differential system with coupled boundary conditions, Communications in Nonlinear Science and Numerical Simulation, 18, 11, 3061-3074 (2013) · Zbl 1329.34010 · doi:10.1016/j.cnsns.2013.04.009
[9] Jiang, J.; Liu, L.; Wu, Y., Symmetric positive solutions to singular system with multi-point coupled boundary conditions, Applied Mathematics and Computation, 220, 536-548 (2013) · Zbl 1334.34059 · doi:10.1016/j.amc.2013.06.038
[10] Liu, L.; Hao, X.; Wu, Y., Positive solutions for singular second order differential equations with integral boundary conditions, Mathematical and Computer Modelling, 57, 3-4, 836-847 (2013) · Zbl 1305.34040 · doi:10.1016/j.mcm.2012.09.012
[11] Liu, L. S.; Jiang, J. Q.; Wu, Y. H., The unique solution of a class of sum mixed monotone operator equations and its application to fractional boundary value problems, Journal of Nonlinear Science and Applications, 9, 5, 2943-2958 (2016) · Zbl 1492.47060
[12] Jiang, J.; Liu, L., Existence of solutions for a sequential fractional differential system with coupled boundary conditions, Boundary Value Problems, 2016, 159 (2016)
[13] Li, F.; Gao, Q., Blow-up of solution for a nonlinear Petrovsky type equation with memory, Applied Mathematics and Computation, 274, 383-392 (2016) · Zbl 1410.35085 · doi:10.1016/j.amc.2015.11.018
[14] Zhang, K. M., On a sign-changing solution for some fractional differential equations, Boundary Value Problems, 2017, 59 (2017) · Zbl 1360.34051
[15] Ding, J.; Wang, J.; Ye, Z., Growth of meromorphic solutions to some complex functional equations, Computational Methods and Function Theory, 16, 3, 489-502 (2016) · Zbl 1348.30017 · doi:10.1007/s40315-016-0157-z
[16] Vakhnenko, V. A., Solitons in a nonlinear model medium, Journal of Physics A: Mathematical and General, 25, 15, 4181-4187 (1992) · Zbl 0754.35132 · doi:10.1088/0305-4470/25/15/025
[17] Vakhnenko, V. O., High-frequency soliton-like waves in a relaxing medium, Journal of Mathematical Physics, 40, 4, 2011-2020 (1999) · Zbl 0946.35094 · doi:10.1063/1.532847
[18] Vakhnenko, V. O.; Parkes, E. J., The two loop soliton solution of the Vakhnenko equation, Nonlinearity, 11, 6, 1457-1464 (1998) · Zbl 0914.35115 · doi:10.1088/0951-7715/11/6/001
[19] Morrison, A. J.; Parkes, E. J.; Vakhnenko, V. O., The \(N\) loop soliton solution of the Vakhnenko equation, Nonlinearity, 12, 5, 1427-1437 (1999) · Zbl 0935.35129 · doi:10.1088/0951-7715/12/5/314
[20] Vakhnenko, V. O.; Parkes, E. J.; Michtchenko, A. V., The Vakhnenko equation from the viewpoint of the inverse scattering method for the KdV equation, International Journal of Differential Equations and Applications, 1, 4, 429-449 (2000)
[21] Vakhnenko, V. O.; Parkes, E. J., The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method, Chaos, Solitons & Fractals, 13, 9, 1819-1826 (2002) · Zbl 1067.37106 · doi:10.1016/S0960-0779(01)00200-4
[22] Köroglu, C.; Özis, T., A novel traveling wave solution for Ostrovsky equation using exp-function method, Computers and Mathematics with Applications, 58, 11-12, 2142-2146 (2009) · Zbl 1189.35283 · doi:10.1016/j.camwa.2009.03.028
[23] Abazari, R., Application of \((G^'/G)\)-expansion method to travelling wave solutions of three nonlinear evolution equation, Computers & Fluids. An International Journal, 39, 10, 1957-1963 (2010) · Zbl 1245.76096 · doi:10.1016/j.compfluid.2010.06.024
[24] Yuan, W.; Li, Y.; Lin, J., Meromorphic solutions of an auxiliary ordinary differential equation using complex method, Mathematical Methods in the Applied Sciences, 36, 13, 1776-1782 (2013) · Zbl 1291.30237 · doi:10.1002/mma.2723
[25] Yuan, W.; Meng, F.; Huang, Y.; Wu, Y., All traveling wave exact solutions of the variant Boussinesq equations, Applied Mathematics and Computation, 268, 865-872 (2015) · Zbl 1410.35192 · doi:10.1016/j.amc.2015.06.088
[26] Yuan, W. J.; Shang, Y. D.; Huang, Y.; Wang, H., The representation of meromorphic solutions to certain ordinary differential equations and its applications, Scientia Sinica Mathematica, 43, 6, 563-575 (2013) · Zbl 1488.34490 · doi:10.1360/012012-159
[27] Conte, R.; Musette, M., Elliptic general analytic solutions, Studies in Applied Mathematics, 123, 1, 63-81 (2009) · Zbl 1185.35221 · doi:10.1111/j.1467-9590.2009.00447.x
[28] Eremenko, A. E.; Liao, L.; Ng, T. W., Meromorphic solutions of higher order Briot-Bouquet differential equations, Mathematical Proceedings of the Cambridge Philosophical Society, 146, 1, 197-206 (2009) · Zbl 1163.34058 · doi:10.1017/S030500410800176X
[29] Kudryashov, N. A., Meromorphic solutions of nonlinear ordinary differential equations, Communications in Nonlinear Science and Numerical Simulation, 15, 10, 2778-2790 (2010) · Zbl 1222.35160 · doi:10.1016/j.cnsns.2009.11.013
[30] Lang, S., Elliptic Functions (1987), New York, NY, USA: Springer, New York, NY, USA · doi:10.1007/978-1-4612-4752-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.