Couzens, Christopher; Lawrie, Craig; Martelli, Dario; Schäfer-Nameki, Sakura; Wong, Jin-Mann F-theory and \(\mathrm{AdS}_{3}/CFT_{2}\). (English) Zbl 1381.81110 J. High Energy Phys. 2017, No. 8, Paper No. 43, 72 p. (2017). Summary: We construct supersymmetric \(\mathrm{AdS}_{3}\) solutions in F-theory, that is Type IIB supergravity with varying axio-dilaton, which are holographically dual to 2d \(\;\mathcal{N}=\left(0,4\right) \) superconformal field theories with small superconformal algebra. In F-theory these arise from D3-branes wrapped on curves in the base of an elliptically fibered Calabi-Yau threefold \(Y_3\) and correspond to self-dual strings in the 6d \(\;\mathcal{N}=\left(1,0\right) \) theory obtained from F-theory on \(Y_3\). The non-trivial fibration over the wrapped curves implies a varying coupling of the \( \mathcal{N}=4 \) Super-Yang-Mills theory on the D3-branes. We compute the holographic central charges and show that these agree with the field theory and with the anomalies of self-dual strings in 6d. We complement our analysis with a discussion of the dual M-theory solutions and a comparison of the central charges. Cited in 1 ReviewCited in 45 Documents MSC: 81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics 83E50 Supergravity 14J32 Calabi-Yau manifolds (algebro-geometric aspects) 32Q25 Calabi-Yau theory (complex-analytic aspects) Keywords:AdS-CFT correspondence; F-theory PDF BibTeX XML Cite \textit{C. Couzens} et al., J. High Energy Phys. 2017, No. 8, Paper No. 43, 72 p. (2017; Zbl 1381.81110) Full Text: DOI arXiv References: [1] C. Vafa, Evidence for F-theory, Nucl. Phys.B 469 (1996) 403 [hep-th/9602022] [INSPIRE]. · Zbl 1003.81531 [2] D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 1, Nucl. Phys.B 473 (1996) 74 [hep-th/9602114] [INSPIRE]. · Zbl 0925.14005 [3] D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2, Nucl. Phys.B 476 (1996) 437 [hep-th/9603161] [INSPIRE]. · Zbl 0925.14005 [4] M. Bershadsky, A. Johansen, V. Sadov and C. Vafa, Topological reduction of 4D SYM to 2D σ-models, Nucl. Phys.B 448 (1995) 166 [hep-th/9501096] [INSPIRE]. · Zbl 1009.58502 [5] B. Haghighat, A. Iqbal, C. Kozçaz, G. Lockhart and C. Vafa, M-strings, Commun. Math. Phys.334 (2015) 779 [arXiv:1305.6322] [INSPIRE]. · Zbl 1393.81031 [6] B. Haghighat, A. Klemm, G. Lockhart and C. Vafa, Strings of minimal 6d SCFTs, Fortsch. Phys.63 (2015) 294 [arXiv:1412.3152] [INSPIRE]. · Zbl 1338.81324 [7] M. Del Zotto and G. Lockhart, On exceptional instanton strings, arXiv:1609.00310 [INSPIRE]. · Zbl 1382.83109 [8] B. Haghighat, S. Murthy, C. Vafa and S. Vandoren, F-theory, spinning black holes and multi-string branches, JHEP01 (2016) 009 [arXiv:1509.00455] [INSPIRE]. · Zbl 1388.83817 [9] C. Lawrie, S. Schäfer-Nameki and T. Weigand, Chiral 2d theories from N = 4 SYM with varying coupling, JHEP04 (2017) 111 [arXiv:1612.05640] [INSPIRE]. · Zbl 1378.81141 [10] D.R. Morrison and W. Taylor, Classifying bases for 6D F-theory models, Central Eur. J. Phys.10 (2012) 1072 [arXiv:1201.1943] [INSPIRE]. · Zbl 1255.81210 [11] L. Martucci, Topological duality twist and brane instantons in F-theory, JHEP06 (2014) 180 [arXiv:1403.2530] [INSPIRE]. · Zbl 1333.81349 [12] B. Assel and S. Schäfer-Nameki, Six-dimensional origin of N = 4 SYM with duality defects, JHEP12 (2016) 058 [arXiv:1610.03663] [INSPIRE]. · Zbl 1390.81560 [13] F. Bonetti and T.W. Grimm, Six-dimensional (1,0) effective action of F-theory via M-theory on Calabi-Yau threefolds, JHEP05 (2012) 019 [arXiv:1112.1082] [INSPIRE]. · Zbl 1348.81353 [14] A. Grassi, On minimal models of elliptic threefolds, Math. Ann.290 (1991) 287. · Zbl 0719.14006 [15] A. Grassi, The singularities of the parameter surface of a minimal elliptic threefold, Internat. J. Math.4 (1993) 203. · Zbl 0802.14020 [16] K. Kodaira, On compact analytic surfaces II, Ann. Math.77 (1963) 563. · Zbl 0118.15802 [17] A. Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux (in French), Inst. Hautes Études Sci. Publ. Math.21 (1964) 128. · Zbl 0132.41403 [18] E. Ó. Colgáin, J.-B. Wu and H. Yavartanoo, Supersymmetric AdS3× S2M-theory geometries with fluxes, JHEP08 (2010) 114 [arXiv:1005.4527] [INSPIRE]. · Zbl 1290.81109 [19] Ö. Kelekci, Y. Lozano, J. Montero, E. Ó. Colgáin and M. Park, Large superconformal near-horizons from M-theory, Phys. Rev.D 93 (2016) 086010 [arXiv:1602.02802] [INSPIRE]. [20] J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP12 (1997) 002 [hep-th/9711053] [INSPIRE]. · Zbl 0951.83034 [21] C. Vafa, Black holes and Calabi-Yau threefolds, Adv. Theor. Math. Phys.2 (1998) 207 [hep-th/9711067] [INSPIRE]. · Zbl 0956.83029 [22] R. Minasian, G.W. Moore and D. Tsimpis, Calabi-Yau black holes and (0, 4) σ-models, Commun. Math. Phys.209 (2000) 325 [hep-th/9904217] [INSPIRE]. · Zbl 0960.83022 [23] I. Bena, D.-E. Diaconescu and B. Florea, Black string entropy and Fourier-Mukai transform, JHEP04 (2007) 045 [hep-th/0610068] [INSPIRE]. [24] M. Ademollo et al., Supersymmetric strings and color confinement, Phys. Lett.B 62 (1976) 105 [INSPIRE]. [25] J.A. Harvey, R. Minasian and G.W. Moore, Non-Abelian tensor multiplet anomalies, JHEP09 (1998) 004 [hep-th/9808060] [INSPIRE]. · Zbl 0953.81093 [26] D. Martelli and J. Sparks, G structures, fluxes and calibrations in M-theory, Phys. Rev.D 68 (2003) 085014 [hep-th/0306225] [INSPIRE]. [27] J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS5solutions of M-theory, Class. Quant. Grav.21 (2004) 4335 [hep-th/0402153] [INSPIRE]. · Zbl 1059.83038 [28] J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS5solutions of type IIB supergravity, Class. Quant. Grav.23 (2006) 4693 [hep-th/0510125] [INSPIRE]. · Zbl 1096.83069 [29] M. Gabella, D. Martelli, A. Passias and J. Sparks, N = 2 supersymmetric AdS4solutions of M-theory, Commun. Math. Phys.325 (2014) 487 [arXiv:1207.3082] [INSPIRE]. · Zbl 1282.83010 [30] F. Apruzzi, M. Fazzi, D. Rosa and A. Tomasiello, All AdS7solutions of type-II supergravity, JHEP04 (2014) 064 [arXiv:1309.2949] [INSPIRE]. [31] F. Apruzzi, M. Fazzi, A. Passias, D. Rosa and A. Tomasiello, AdS6solutions of type-II supergravity, JHEP11 (2014) 099 [Erratum ibid.05 (2015) 012] [arXiv:1406.0852] [INSPIRE]. · Zbl 1061.81058 [32] F. Apruzzi, M. Fazzi, A. Passias and A. Tomasiello, Supersymmetric AdS5solutions of massive IIA supergravity, JHEP06 (2015) 195 [arXiv:1502.06620] [INSPIRE]. · Zbl 1388.83723 [33] C. Couzens, C. Lawrie, D. Martelli and S. Schäfer-Nameki, in progress. · Zbl 1372.83076 [34] H.J. Boonstra, B. Peeters and K. Skenderis, Brane intersections, anti-de Sitter space-times and dual superconformal theories, Nucl. Phys.B 533 (1998) 127 [hep-th/9803231] [INSPIRE]. · Zbl 0956.81060 [35] D. Tong, The holographic dual of AdS3× S3× S3× S1, JHEP04 (2014) 193 [arXiv:1402.5135] [INSPIRE]. [36] N. Kim, AdS3solutions of IIB supergravity from D3-branes, JHEP01 (2006) 094 [hep-th/0511029] [INSPIRE]. [37] J.P. Gauntlett, O.A.P. Mac Conamhna, T. Mateos and D. Waldram, New supersymmetric AdS3solutions, Phys. Rev.D 74 (2006) 106007 [hep-th/0608055] [INSPIRE]. [38] J.P. Gauntlett, N. Kim and D. Waldram, Supersymmetric AdS3, AdS2and bubble solutions, JHEP04 (2007) 005 [hep-th/0612253] [INSPIRE]. [39] J.P. Gauntlett and O.A.P. Mac Conamhna, AdS spacetimes from wrapped D3-branes, Class. Quant. Grav.24 (2007) 6267 [arXiv:0707.3105] [INSPIRE]. · Zbl 1133.83012 [40] A. Donos, J.P. Gauntlett and N. Kim, AdS solutions through transgression, JHEP09 (2008) 021 [arXiv:0807.4375] [INSPIRE]. · Zbl 1245.83060 [41] F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization, JHEP06 (2013) 005 [arXiv:1302.4451] [INSPIRE]. · Zbl 1390.83325 [42] N. Bobev, K. Pilch and O. Vasilakis, (0, 2) SCFTs from the Leigh-Strassler fixed point, JHEP06 (2014) 094 [arXiv:1403.7131] [INSPIRE]. · Zbl 1333.81158 [43] F. Benini, N. Bobev and P.M. Crichigno, Two-dimensional SCFTs from D3-branes, JHEP07 (2016) 020 [arXiv:1511.09462] [INSPIRE]. · Zbl 1390.83088 [44] F. Benini and N. Bobev, Exact two-dimensional superconformal R-symmetry and c-extremization, Phys. Rev. Lett.110 (2013) 061601 [arXiv:1211.4030] [INSPIRE]. · Zbl 1390.83325 [45] O. Aharony, A. Fayyazuddin and J.M. Maldacena, The large-N limit of N = 2, N = 1 field theories from three-branes in F-theory, JHEP07 (1998) 013 [hep-th/9806159] [INSPIRE]. · Zbl 0958.81084 [46] C.-H. Ahn, K. Oh and R. Tatar, The large-N limit of N = 1 field theories from F-theory, Mod. Phys. Lett.A 14 (1999) 369 [hep-th/9808143] [INSPIRE]. [47] O. Aharony and Y. Tachikawa, A holographic computation of the central charges of D = 4, N = 2 SCFTs, JHEP01 (2008) 037 [arXiv:0711.4532] [INSPIRE]. [48] J. Erdmenger, N. Evans, I. Kirsch and E. Threlfall, Mesons in gauge/gravity duals — a review, Eur. Phys. J.A 35 (2008) 81 [arXiv:0711.4467] [INSPIRE]. [49] E.I. Buchbinder, J. Gomis and F. Passerini, Holographic gauge theories in background fields and surface operators, JHEP12 (2007) 101 [arXiv:0710.5170] [INSPIRE]. · Zbl 1246.81356 [50] J.A. Harvey and A.B. Royston, Gauge/gravity duality with a chiral N = (0, 8) string defect, JHEP08 (2008) 006 [arXiv:0804.2854] [INSPIRE]. [51] J.A. Harvey and A.B. Royston, Localized modes at a D-brane-O-plane intersection and heterotic Alice atrings, JHEP04 (2008) 018 [arXiv:0709.1482] [INSPIRE]. · Zbl 1246.81340 [52] E. D’Hoker, M. Gutperle, A. Karch and C.F. Uhlemann, Warped AdS6× S2in type IIB supergravity I: local solutions, JHEP08 (2016) 046 [arXiv:1606.01254] [INSPIRE]. [53] E. D’Hoker, M. Gutperle and C.F. Uhlemann, Warped AdS6× S2in type IIB supergravity II: global solutions and five-brane webs, JHEP05 (2017) 131 [arXiv:1703.08186] [INSPIRE]. · Zbl 1380.83282 [54] D. Bak, M. Gutperle and S. Hirano, A dilatonic deformation of AdS5and its field theory dual, JHEP05 (2003) 072 [hep-th/0304129] [INSPIRE]. [55] E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS type IIB interface solutions I. Local solution and supersymmetric Janus, JHEP06 (2007) 021 [arXiv:0705.0022] [INSPIRE]. [56] A.B. Clark, D.Z. Freedman, A. Karch and M. Schnabl, Dual of the Janus solution: an interface conformal field theory, Phys. Rev.D 71 (2005) 066003 [hep-th/0407073] [INSPIRE]. · Zbl 1096.83069 [57] C. Bachas, E. D’Hoker, J. Estes and D. Krym, M-theory solutions invariant under D(2, 1; γ) ⊕ D(2, 1; γ), Fortsch. Phys.62 (2014) 207 [arXiv:1312.5477] [INSPIRE]. · Zbl 1338.81310 [58] D. Gaiotto and E. Witten, Janus configurations, Chern-Simons couplings, and the θ-angle in N = 4 super Yang-Mills theory, JHEP06 (2010) 097 [arXiv:0804.2907] [INSPIRE]. · Zbl 1290.81065 [59] F. Denef, Les Houches lectures on constructing string vacua, in String theory and the real world: from particle physics to astrophysics. Proceedings, Summer School in Theoretical Physics, 87thSession, Les Houches France, 2-27 July 2007, pg. 483 [arXiv:0803.1194] [INSPIRE]. · Zbl 0934.81061 [60] T. Weigand, Lectures on F-theory compactifications and model building, Class. Quant. Grav.27 (2010) 214004 [arXiv:1009.3497] [INSPIRE]. · Zbl 1204.83007 [61] J. Marsano and S. Schäfer-Nameki, Yukawas, G-flux and spectral covers from resolved Calabi-Yau’s, JHEP11 (2011) 098 [arXiv:1108.1794] [INSPIRE]. · Zbl 1306.81258 [62] B.R. Greene, A.D. Shapere, C. Vafa and S.-T. Yau, Stringy cosmic strings and noncompact Calabi-Yau manifolds, Nucl. Phys.B 337 (1990) 1 [INSPIRE]. · Zbl 0744.53045 [63] M. Gross and P.M.H. Wilson, Large complex structure limits of K3 surfaces, J. Diff. Geom.55 (2000) 475. · Zbl 1027.32021 [64] P.S. Aspinwall et al., Dirichlet branes and mirror symmetry, in Clay Mathematics Monographs4, American Mathematical Society, Providence RI U.S.A., (2009) [INSPIRE]. · Zbl 1188.14026 [65] R. Wazir, Arithmetic on elliptic threefolds, Compos. Math.140 (2004) 567. · Zbl 1060.11039 [66] K. Kodaira, On Kähler varieties of restricted type (an intrinsic characterization of algebraic varieties), Ann. Math.60 (1954) 28. · Zbl 0057.14102 [67] K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys.B 497 (1997) 56 [hep-th/9702198] [INSPIRE]. · Zbl 0934.81061 [68] T.W. Grimm and H. Hayashi, F-theory fluxes, chirality and Chern-Simons theories, JHEP03 (2012) 027 [arXiv:1111.1232] [INSPIRE]. · Zbl 1309.81218 [69] H. Hayashi, C. Lawrie, D.R. Morrison and S. Schäfer-Nameki, Box graphs and singular fibers, JHEP05 (2014) 048 [arXiv:1402.2653] [INSPIRE]. · Zbl 1333.81369 [70] A. Schwimmer and N. Seiberg, Comments on the N = 2, N = 3, N = 4 superconformal algebras in two-dimensions, Phys. Lett.B 184 (1987) 191 [INSPIRE]. [71] J.H. Schwarz, Covariant field equations of chiral N = 2 D = 10 supergravity, Nucl. Phys.B 226 (1983) 269 [INSPIRE]. [72] P.S. Howe and P.C. West, The complete N = 2, D = 10 supergravity, Nucl. Phys.B 238 (1984) 181 [INSPIRE]. [73] C. Voisin, Hodge theory and complex algebraic geometry I, in Cambridge Studies in Advanced Mathematics76, Cambridge University Press, Cambridge U.K., (2007). · Zbl 1129.14019 [74] J.P. Gauntlett, D. Martelli, S. Pakis and D. Waldram, G structures and wrapped NS5-branes, Commun. Math. Phys.247 (2004) 421 [hep-th/0205050] [INSPIRE]. · Zbl 1061.81058 [75] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE]. · Zbl 0969.81047 [76] H. Ooguri and C. Vafa, Summing up D instantons, Phys. Rev. Lett.77 (1996) 3296 [hep-th/9608079] [INSPIRE]. · Zbl 0944.81528 [77] A.W. Peet, TASI lectures on black holes in string theory, in Strings, branes and gravity. Proceedings, Theoretical Advanced Study Institute, TASI’99, Boulder U.S.A., 31 May-25 June 1999, pg. 353 [hep-th/0008241] [INSPIRE]. · Zbl 1004.83002 [78] J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys.104 (1986) 207 [INSPIRE]. · Zbl 0584.53039 [79] P. Kraus and F. Larsen, Holographic gravitational anomalies, JHEP01 (2006) 022 [hep-th/0508218] [INSPIRE]. [80] M.B. Green, J.A. Harvey and G.W. Moore, I-brane inflow and anomalous couplings on D-branes, Class. Quant. Grav.14 (1997) 47 [hep-th/9605033] [INSPIRE]. · Zbl 0867.53063 [81] J. Hansen and P. Kraus, Generating charge from diffeomorphisms, JHEP12 (2006) 009 [hep-th/0606230] [INSPIRE]. · Zbl 1226.83062 [82] A. Dabholkar, J. Gomes, S. Murthy and A. Sen, Supersymmetric index from black hole entropy, JHEP04 (2011) 034 [arXiv:1009.3226] [INSPIRE]. · Zbl 1250.81105 [83] S.T. Yau, Calabi’s conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. U.S.A.74 (1977) 1798 [INSPIRE]. · Zbl 0355.32028 [84] E. Witten, On flux quantization in M-theory and the effective action, J. Geom. Phys.22 (1997) 1 [hep-th/9609122] [INSPIRE]. · Zbl 0908.53065 [85] P. Kraus and F. Larsen, Microscopic black hole entropy in theories with higher derivatives, JHEP09 (2005) 034 [hep-th/0506176] [INSPIRE]. [86] A.A. Tseytlin, R4terms in 11 dimensions and conformal anomaly of (2, 0) theory, Nucl. Phys.B 584 (2000) 233 [hep-th/0005072] [INSPIRE]. · Zbl 0984.81147 [87] M.J. Duff, J.T. Liu and R. Minasian, Eleven-dimensional origin of string-string duality: a one loop test, Nucl. Phys.B 452 (1995) 261 [hep-th/9506126] [INSPIRE]. · Zbl 0925.81148 [88] R. Bott and A.S. Cattaneo, Integral invariants of 3-manifolds II, J. Diff. Geom.53 (1999) 1. · Zbl 1036.57500 [89] A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett.B 379 (1996) 99 [hep-th/9601029] [INSPIRE]. · Zbl 1376.83026 [90] E. Witten, Five-brane effective action in M-theory, J. Geom. Phys.22 (1997) 103 [hep-th/9610234] [INSPIRE]. · Zbl 0878.58063 [91] D. Freed, J.A. Harvey, R. Minasian and G.W. Moore, Gravitational anomaly cancellation for M-theory five-branes, Adv. Theor. Math. Phys.2 (1998) 601 [hep-th/9803205] [INSPIRE]. · Zbl 0971.81152 [92] K.A. Intriligator, Anomaly matching and a Hopf-Wess-Zumino term in 6d, N = (2, 0) field theories, Nucl. Phys.B 581 (2000) 257 [hep-th/0001205] [INSPIRE]. · Zbl 0984.81145 [93] D.S. Berman and J.A. Harvey, The self-dual string and anomalies in the M 5-brane, JHEP11 (2004) 015 [hep-th/0408198] [INSPIRE]. [94] H. Shimizu and Y. Tachikawa, Anomaly of strings of 6d N = (1, 0) theories, JHEP11 (2016) 165 [arXiv:1608.05894] [INSPIRE]. · Zbl 1390.81470 [95] G. Lopes Cardoso, B. de Wit and T. Mohaupt, Macroscopic entropy formulae and nonholomorphic corrections for supersymmetric black holes, Nucl. Phys.B 567 (2000) 87 [hep-th/9906094] [INSPIRE]. · Zbl 0951.81039 [96] N. Lambert, The M 5-brane on K3 × T2, JHEP02 (2008) 060 [arXiv:0712.3166] [INSPIRE]. [97] P. Putrov, J. Song and W. Yan, (0, 4) dualities, JHEP03 (2016) 185 [arXiv:1505.07110] [INSPIRE]. [98] Y. Lozano, N.T. Macpherson, J. Montero and E. Ó. Colgáin, New AdS3× S2T-duals with N = (0,4) supersymmetry, JHEP08(2015) 121[arXiv:1507.02659] [INSPIRE]. · Zbl 1388.81861 [99] L. Wulff, All symmetric space solutions of eleven-dimensional supergravity, J. Phys.A 50 (2017) 245401 [arXiv:1611.06139] [INSPIRE]. · Zbl 1372.83076 [100] S. Schäfer-Nameki and T. Weigand, F-theory and 2d (0, 2) theories, JHEP05 (2016) 059 [arXiv:1601.02015] [INSPIRE]. · Zbl 1388.81189 [101] F. Apruzzi, F. Hassler, J.J. Heckman and I.V. Melnikov, UV completions for non-critical strings, JHEP07 (2016) 045 [arXiv:1602.04221] [INSPIRE]. · Zbl 1390.81296 [102] A. Fayyazuddin and M. Spalinski, Large-N superconformal gauge theories and supergravity orientifolds, Nucl. Phys.B 535 (1998) 219 [hep-th/9805096] [INSPIRE]. · Zbl 1080.81571 [103] A. Kehagias, New type IIB vacua and their F-theory interpretation, Phys. Lett.B 435 (1998) 337 [hep-th/9805131] [INSPIRE]. [104] J.J. Heckman, D.R. Morrison and C. Vafa, On the classification of 6D SCFTs and generalized ADE orbifolds, JHEP05 (2014) 028 [Erratum ibid.06 (2015) 017] [arXiv:1312.5746] [INSPIRE]. [105] H. Lü, C.N. Pope and J. Rahmfeld, A construction of Killing spinors on Sn, J. Math. Phys.40 (1999) 4518 [hep-th/9805151] [INSPIRE]. · Zbl 0979.53053 [106] M.F. Sohnius, Introducing supersymmetry, Phys. Rept.128 (1985) 39 [INSPIRE]. [107] V. Balasubramanian, E.G. Gimon, D. Minic and J. Rahmfeld, Four-dimensional conformal supergravity from AdS space, Phys. Rev.D 63 (2001) 104009 [hep-th/0007211] [INSPIRE]. [108] T. Hubsch, Calabi-Yau manifolds: a bestiary for physicists, World Scientific, Singapore, (1994) [INSPIRE]. · Zbl 0771.53002 [109] C. Voisin, Hodge theory and complex algebraic geometry II, in Cambridge Studies in Advanced Mathematics77, Cambridge University Press, Cambridge U.K., (2007). · Zbl 1129.14020 [110] Y. Nakai, A criterion of an ample sheaf on a projective scheme, Amer. J. Math.85 (1963) 14. · Zbl 0112.13102 [111] B.G. Moishezon, A projectivity criterion of complete algebraic abstract varieties, Izv. Akad. Nauk SSSR Ser. Mat.28 (1964) 179. [112] R. Lazarsfeld, Positivity in algebraic geometry I, in A Series of Modern Surveys in Mathematics48, Springer-Verlag, Berlin Germany, (2004). · Zbl 1066.14021 [113] R. Hartshorne, Algebraic geometry, Springer-Verlag, New York U.S.A. and Heidelberg Germany, (1977). · Zbl 0367.14001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.