×

Representing superoscillations and narrow Gaussians with elementary functions. (English) Zbl 1383.42006

Summary: A simple addition to the collection of superoscillatory functions is constructed, in the form of a square-integrable sinc function which is band-limited yet in some intervals oscillates faster than its highest Fourier component. Two parameters enable tuning of the local frequency of the superoscillations and the length of the interval over which they occur. Away from the superoscillatory intervals, the function rises to exponentially large values. An integral transform generates other band-limited functions with arbitrarily narrow peaks that are locally Gaussian. In the (delicate) limit of zero width, these would be Dirac delta-functions, which by superposition could enable construction of band-limited functions with arbitrarily fine structure.

MSC:

42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
26A09 Elementary functions
41A60 Asymptotic approximations, asymptotic expansions (steepest descent, etc.)
62E17 Approximations to statistical distributions (nonasymptotic)

Software:

DLMF
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Schelkunoff S. A. (1943) A Mathematical Theory of Linear Arrays Bell. Syst. Tech. J. 22: 80-107 · Zbl 0063.06775 · doi:10.1002/j.1538-7305.1943.tb01306.x
[2] Hansen, R. C.,1983, Linear Arrays in The Handbook of Antenna Design, Volume 2 eds. Rudge, A. W., Milne, K., Olver, A. D. & Knight, P. (Peter Peregrinus, London), pp. 1-134. · Zbl 1375.94064
[3] Cox, H., Zeskind, R. M. & Kooij, T.,1986, Practical Supergain IEEE Trans. Acoustics, Speech and Signal ProcessingASSP-34, 393-398
[4] Haviland R. P. (1995) Supergain Antennas: Possibilities and Problems. IEEE Antennas & Propagation Magazine 37: 13-26 · doi:10.1109/74.414725
[5] Berry, M. V.,2013, Superoscillations, endfire and supergain in Quantum Theiory: a Two-time Success Story: Yakir Aharonov Festschrift eds. Struppa, D. & Tollaksen, J. (Springer, New York), pp. 327-336. · Zbl 1282.81069
[6] Toraldo di Francia G. (1952) SuperGain Antennas and Optical Resolving Power. Nuovo Cimento Suppl. 9: 426-438 · doi:10.1007/BF02903413
[7] Leiserson I., Lipson S.G., Sarafis V. (2000) Superresolution in far-field imaging. Opt. Lett. 25: 209-211 · doi:10.1364/OL.25.000209
[8] Bucklew J.A., Saleh B.E.A. (1985) Theorem for high-resolution high-contrast image synthesis. J. Opt. Soc. Amer. A 2: 1233-1236 · doi:10.1364/JOSAA.2.001233
[9] Nashold K.M., Buckew J.A., Rudin W., Saleh B.E.A. (1989) Synthesis of binary images from band-limited functions. J. Opt. Soc. Amer. A 6: 852-858 · doi:10.1364/JOSAA.6.000852
[10] Rogers E.T.F., Lindberg J., Roy T., Savo S., Chad J.E., Dennis M.R., Zheludev N. I. (2012) A super-oscillatory lens optical microscope for subwavelength imaging. Nature Materials 11: 432-435 · doi:10.1038/nmat3280
[11] Aharonov Y., Albert D.Z., Vaidman L. (1988) How the result of a measurement of a component of the spin of a spin 1/2 particle can turn out to be 100. Phys. Rev. Lett. 60: 1351-1354 · doi:10.1103/PhysRevLett.60.1351
[12] Aharonov, Y., Popescu, S. & Rohrlich, D.,1990, How can an infra-red photon behave as a gamma ray? Tel-Aviv University Preprint TAUP, 1847-1890
[13] Popescu, S.,1991, Multi-time and non-local measurements in quantum mechanics, in Ph.D. thesis, Physics (Tel-Aviv).
[14] Aharonov Y., Popescu S., Tollaksen J. (2010) A time-symmetric formulation of quantum mechanics. Physics Today 63: issue 11, 27-33 · doi:10.1063/1.3518209
[15] Berry, M. V.,1994, Faster than Fourier in Quantum Coherence and Reality; in celebration of the 60th Birthday of Yakir Aharonov eds. Anandan, J. S. & Safko, J. L. (World Scientific, Singapore), pp. 55-65.
[16] Calder, M. S. & Kempf, A.,2005, Analysis of superoscillatory wave functions J. Math. Phys. 46, 012101-1-18 · Zbl 1076.81020
[17] Ferreira P.J.S.G., Kempf A. (2006) Superoscillations: faster than the Nyquist rate. IEEE Trans. Signal Processing 54: 3732-3740 · Zbl 1375.94064 · doi:10.1109/TSP.2006.877642
[18] Aharonov, Y., Colombo, F., Sabadini, I., Struppa, D. C. & Tollaksen, J.,2011, Some mathematical properties of superoscillations J. Phys. A44, 365304 (16pp) · Zbl 1230.42004
[19] Katzav E., Schwartz M. (2013) Yield-Optimised Superoscillations. IEEE Trans. Signal Processing 61: 3113-3118 · doi:10.1109/TSP.2013.2258018
[20] Berry M.V., Popescu S. (2006) Evolution of quantum superoscillations, and optical superresolution without evanescent waves. J.Phys.A. 39: 6965-6977 · Zbl 1122.81029 · doi:10.1088/0305-4470/39/22/011
[21] Berry M.V. (1994) Evanescent and real waves in quantum billiards, and Gaussian Beams. J. Phys. A 27: L391-L398 · Zbl 0843.58087 · doi:10.1088/0305-4470/27/11/008
[22] Berry, M. V.,2013, A note on superoscillations associated with Bessel beams J.Opt. 15, 044006 (5pp) · Zbl 1122.81029
[23] Makris K.G., Psaltis D. (2011) Superoscillatory diffraction-free beams. Opt. Lett. 36: 4335-4337 · doi:10.1364/OL.36.004335
[24] Berry, M. V.,2013, Exact nonparaxial transmission of subwavelength detail using superoscillations J. Phys. A46, 205203 (15pp) · Zbl 1266.78011
[25] Deschamps G.A. (1971) Gaussian beam as a bundle of complex rays. Electronics Lett. 7: 684-685 · doi:10.1049/el:19710467
[26] Siegman, A. E.,1986, Lasers (University Science Books, Mill Valley)
[27] DLMF,2010, NIST Handbook of Mathematical Functions (University Press, Cambridge) http://dlmf.nist.gov. · Zbl 1198.00002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.