×

Efficient virtual element formulations for compressible and incompressible finite deformations. (English) Zbl 1386.74146

Summary: The virtual element method has been developed over the last decade and applied to problems in elasticity and other areas. The successful application of the method to linear problems leads naturally to the question of its effectiveness in the nonlinear regime. This work is concerned with extensions of the virtual element method to problems of compressible and incompressible nonlinear elasticity. Low-order formulations for problems in two dimensions, with elements being arbitrary polygons, are considered: for these, the ansatz functions are linear along element edges. The various formulations considered are based on minimization of energy, with a novel construction of the stabilization energy. The formulations are investigated through a series of numerical examples, which demonstrate their efficiency, convergence properties, and for the case of nearly incompressible and incompressible materials, locking-free behaviour.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74B20 Nonlinear elasticity

Software:

AceFEM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bathe KJ (1996) Finite element procedures. Prentice-Hall, Englewood Cliffs · Zbl 1326.65002
[2] Belytschko T, Bindeman LP (1991) Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems. Comput Methods Appl Mech Eng 88(3):311-340 · Zbl 0742.73019 · doi:10.1016/0045-7825(91)90093-L
[3] Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, Chichester · Zbl 0959.74001
[4] Belytschko T, Ong JSJ, Liu WK, Kennedy JM (1984) Hourglass control in linear and nonlinear problems. Comput Methods Appl Mech Eng 43:251-276 · Zbl 0522.73063 · doi:10.1016/0045-7825(84)90067-7
[5] Biabanaki S, Khoei A (2012) A polygonal finite element method for modeling arbitrary interfaces in large deformation problems. Comput Mech 50:19-33 · Zbl 1312.74032 · doi:10.1007/s00466-011-0668-4
[6] Biabanaki SOR, Khoei AR, Wriggers P (2014) Polygonal finite element methods for contact-impact problems on non-conformal meshes. Comput Methods Appl Mech Eng 269:198-221 · Zbl 1296.74105 · doi:10.1016/j.cma.2013.10.025
[7] Boerner E, Loehnert S, Wriggers P (2007) A new finite element based on the theory of a Cosserat point—extension to initially distorted elements for 2D plane strains. Int J Numer Methods Eng 71:454-472 · Zbl 1194.74366 · doi:10.1002/nme.1954
[8] Cangiani A, Manzini G, Russo A, Sukumar N (2015) Hourglass stabilization and the virtual element method. Int J Numer Methods Eng 102:404-436 · Zbl 1352.65475 · doi:10.1002/nme.4854
[9] Chi H, da Veiga LB, Paulino G (2016) Some basic formulations of the virtual element method (VEM) for finite deformations. Comput Methods Appl Mech Eng. doi:10.1016/j.cma.2016.12.020 · doi:10.1016/j.cma.2016.12.020
[10] Chi H, Talischi C, Lopez-Pamies O, Paulino HG (2015) Polygonal finite elements for finite elasticity. Int J Numer Methods Eng 101(4):305-328 · Zbl 1352.74044 · doi:10.1002/nme.4802
[11] da Beirão LV, Brezzi F, Cangiani A, Manzini G, Marini L, Russo A (2013) Basic principles of virtual element methods. Math Models Methods Appl Sci 23(01):199-214 · Zbl 1416.65433 · doi:10.1142/S0218202512500492
[12] da Beirão LV, Brezzi F, Marini L (2013) Virtual elements for linear elasticity problems. SIAM J Numer Anal 51(2):794-812 · Zbl 1268.74010 · doi:10.1137/120874746
[13] da Beirão LV, Brezzi F, Marini LD, Russo A (2014) The Hitchhiker’s guide to the virtual element method. Math Models Methods Appl Sci 24(08):1541-1573 · Zbl 1291.65336 · doi:10.1142/S021820251440003X
[14] da Beirão LV, Lovadina C, Mora D (2015) A virtual element method for elastic and inelastic problems on polytope meshes. Comput Methods Appl Mech Eng 295:327-346 · Zbl 1423.74120 · doi:10.1016/j.cma.2015.07.013
[15] Flanagan D, Belytschko T (1981) A uniform strain hexahedron and quadrilateral with orthogonal hour-glass control. Int J Numer Methods Eng 17:679-706 · Zbl 0478.73049 · doi:10.1002/nme.1620170504
[16] Gain AL, Talischi C, Paulino GH (2014) On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput Methods Appl Mech Eng 282:132-160 · Zbl 1423.74095
[17] Korelc J, Solinc U, Wriggers P (2010) An improved EAS brick element for finite deformation. Comput Mech 46:641-659 · Zbl 1358.74059 · doi:10.1007/s00466-010-0506-0
[18] Korelc J, Wriggers P (2016) Automation of finite element methods. Springer, Berlin · Zbl 1367.74001
[19] Krysl P (2015a) Mean-strain eight-node hexahedron with optimized energy-sampling stabilization for large-strain deformation. Int J Numer Methods Eng 103:650-670 · Zbl 1352.74386 · doi:10.1002/nme.4907
[20] Krysl P (2015b) Mean-strain eight-node hexahedron with stabilization by energy sampling stabilization. Int J Numer Methods Eng 103:437-449 · Zbl 1352.74077 · doi:10.1002/nme.4721
[21] Krysl P (2016) Mean-strain 8-node hexahedron with optimized energy-sampling stabilization. Finite Elem Anal Des 108:41-53 · doi:10.1016/j.finel.2015.09.008
[22] Loehnert S, Boerner E, Rubin M, Wriggers P (2005) Response of a nonlinear elastic general Cosserat brick element in simulations typically exhibiting locking and hourglassing. Comput Mech 36:255-265 · Zbl 1138.74394 · doi:10.1007/s00466-005-0662-9
[23] Lovadina C, Auricchio F (2003) On the enhanced strain technique for elasticity problems. Comput Struct 81:777-787 · doi:10.1016/S0045-7949(02)00412-1
[24] Mueller-Hoeppe DS, Loehnert S, Wriggers P (2009) A finite deformation brick element with inhomogeneous mode enhancement. Int J Numer Methods Eng 78:1164-1187 · Zbl 1183.74297 · doi:10.1002/nme.2523
[25] Nadler B, Rubin M (2003) A new 3-d finite element for nonlinear elasticity using the theory of a cosserat point. Int J Solids Struct 40:4585-4614 · Zbl 1054.74057 · doi:10.1016/S0020-7683(03)00210-5
[26] Noels L, Radovitzky R (2006) A general discontinuous galerkin method for finite hyperelasticity. formulation and numerical applications. Int J Numer Methods Eng 68:64-97 · Zbl 1145.74039 · doi:10.1002/nme.1699
[27] Reddy BD, Simo JC (1995) Stability and convergence of a class of enhanced strain methods. SIAM J Numer Anal 32:1705-1728 · Zbl 0855.73073 · doi:10.1137/0732077
[28] Reese S (2003) On a consistent hourglass stabilization technique to treat large inelastic deformations and thermo-mechanical coupling in plane strain problems. Int J Numer Methods Eng 57:1095-1127 · Zbl 1062.74626 · doi:10.1002/nme.719
[29] Reese S, Kuessner M, Reddy BD (1999) A new stabilization technique to avoid hourglassing in finite elasticity. Int J Numer Methods Eng 44:1617-1652 · Zbl 0927.74070 · doi:10.1002/(SICI)1097-0207(19990420)44:11<1617::AID-NME557>3.0.CO;2-X
[30] Reese S, Wriggers P (2000) A new stabilization concept for finite elements in large deformation problems. Int J Numer Methods Eng 48:79-110 · Zbl 0983.74070 · doi:10.1002/(SICI)1097-0207(20000510)48:1<79::AID-NME869>3.0.CO;2-D
[31] Simo JC, Armero F (1992) Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int J Numer Methods Eng 33:1413-1449 · Zbl 0768.73082 · doi:10.1002/nme.1620330705
[32] Simo JC, Rifai MS (1990) A class of assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595-1638 · Zbl 0724.73222 · doi:10.1002/nme.1620290802
[33] Simo JC, Taylor RL, Pister KS (1985) Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput Methods Appl Mech Eng 51:177-208 · Zbl 0554.73036 · doi:10.1016/0045-7825(85)90033-7
[34] Sukumar N (2004) Construction of polygonal interpolants: a maximum entropy approach. Int J Numer Methods Eng 61:2159-2181 · Zbl 1073.65505 · doi:10.1002/nme.1193
[35] Sukumar N, Malsch EA (2006) Recent advances in the construction of polygonal finite element interpolants. Arch Comput Methods Eng 13:129-163 · Zbl 1101.65108 · doi:10.1007/BF02905933
[36] Taylor RL (2000) A mixed-enhanced formulation for tetrahedral finite elements. Int J Numer Methods Eng 47:205-227 · Zbl 0985.74074 · doi:10.1002/(SICI)1097-0207(20000110/30)47:1/3<205::AID-NME768>3.0.CO;2-J
[37] ten Eyck A, Lew A (2006) Discontinuous Galerkin methods for non-linear elasticity. Int J Numer Methods Eng 67:1204-1243 · Zbl 1113.74068 · doi:10.1002/nme.1667
[38] Wriggers P (2008) Nonlinear finite elements. Springer, Berlin, Heidelberg, New York · Zbl 1153.74001
[39] Wriggers P, Rust W, Reddy BD (2016) A virtual element method for contact. Comput Mech 58:1039-1050 · Zbl 1398.74420 · doi:10.1007/s00466-016-1331-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.