×

Aspects of \(\mathrm{AdS}_{2}\) holography with non-constant dilaton. (English. Russian original) Zbl 1386.83102

Russ. Phys. J. 59, No. 11, 1798-1803 (2017); translation from Izv. Vyssh. Uchebn. Zaved., Fiz. 59, No. 11, 63-67 (2016).
Summary: In this article we summarize and discuss results presented in [the first and the third author, “Anti-de Sitter holography for gravity and higher spin theories in two dimensions”, Phys. Rev. D 89, No. 4, Article ID 044001, 8 p. (2014; doi:10.1103/PhysRevD.89.044001); the authors, “\(\mathrm{AdS}_2\) holography is (non-)trivial for (non-)constant dilaton”, J. High Energy Phys. 2015, No. 12, Article No. 15, 36 p. (2015; doi:10.1007/JHEP12(2015)015)] in the light of recent developments in holography [J. Maldacena et al., “Conformal symmetry and its breaking in two-dimensional nearly anti-de Sitter space”, PTEP, Prog. Theor. Exper. Phys. 2016, No. 12, Article ID 12C104, 26 p. (2016; doi:10.1093/ptep/ptw124); K. Jensen, “Chaos in \({\mathrm{AdS}}_{2}\) holography”, Phys. Rev. Lett. 117, No. 11, Article ID 111601, 6 p. (2016; doi:10.1103/PhysRevLett.117.111601); J. Engelsöy et al., “An investigation of \({\mathrm{AdS}}_{2}\) backreaction and holography”, J. High Energy Phys. 2016, No. 7, Article ID 139, 30 p. (2016; doi:10.1007/JHEP07(2016)139); A. Jevicki and K. Suzuki, “”, J. High Energy Phys. 2016, No. 11, Article ID 46, 28 p. (2016; doi:10.1007/JHEP11(2016)046)].

MSC:

83C80 Analogues of general relativity in lower dimensions
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Grumiller, D.; Leston, M.; Vassilevich, D., No article title, Phys. Rev., D89, 044001 (2014)
[2] D. Grumiller, J. Salzer, and D. Vassilevich, J. High Energy Phys., No. 12, 15 (2015).
[3] J. Maldacena, D. Stanford, and Z. Yang [arXiv:1606.01857[hep-th]] (2016).
[4] K. Jensen [arXiv:1605.06098[hep-th]] (2016).
[5] J. Engelsöy, T. G. Mertens, and H. Verlinde, J. High Energy Phys., No. 07, 139 (2016).
[6] A. Jevicki, K. Suzuki, and J. Yoon, J. High Energy Phys., No. 07, 007 (2016).
[7] A. Strominger, J. High Energy Phys., No. 02, 009 (1998).
[8] Grumiller, D.; Kummer, W.; Vassilevich, D., No article title, Phys. Rep., 369, 327-430 (2002) · Zbl 0998.83038
[9] Sachdev, S.; Ye, J., No article title, Phys. Rev. Lett., 70, 3339 (1993)
[10] A. Kitaev, http://online.kitp.ucsb.edu/online/entangled15/ (2015).
[11] Ikeda, N., No article title, Ann. Phys., 235, 435-464 (1994) · Zbl 0807.53070
[12] Schaller, P.; Strobl, T., No article title, Mod. Phys. Lett., A9, 3129-3136 (1994) · Zbl 1015.81574
[13] J. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, Springer-Verlag (1994). · Zbl 0811.70002
[14] R. Jackiw, in: Quantum Theory of Gravity, S. Christensen, ed., Adam Hilger, Bristol (1984), pp. 403-420.
[15] C. Teitelboim, ibid., pp. 327-344.
[16] A. Almheiri and J. Polchinski, J. High Energy Phys., No. 11, 014 (2015).
[17] J. Maldacena and D. Stanford, [arXiv:1604.07818[hep-th]] (2016).
[18] J. Polchinski and V. Rosenhaus, J. High Energy Phys., No. 04, 001 (2016).
[19] Bergamin, L.; Grumiller, D.; McNees, R.; Meyer, R., No article title, J. Phys., A41, 164068 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.