Supersymmetric \(\mathrm{AdS}_{3}\) supergravity backgrounds and holography. (English) Zbl 1387.83102

Summary: We analyse the conditions for \(\mathrm{AdS}_{3} \times {\mathcal{M}}_7\) backgrounds with pure NS-NS flux to be supersymmetric. We classify all \( \mathcal{N}=\left(2, 2\right) \) solutions where \({\mathcal{M}}_7\) satisfies the stronger condition of being a U(1)-fibration over a Kähler manifold. We compute the BPS spectrum of all the backgrounds in this classification. We assign a natural dual CFT to the backgrounds and confirm that the BPS spectra agree, thus providing evidence in favour of the proposal.


83E50 Supergravity
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T60 Supersymmetric field theories in quantum mechanics
53B35 Local differential geometry of Hermitian and Kählerian structures
Full Text: DOI arXiv


[1] J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE]. · Zbl 0969.81047
[2] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept.323 (2000) 183 [hep-th/9905111] [INSPIRE]. · Zbl 1368.81009
[3] S. Elitzur, O. Feinerman, A. Giveon and D. Tsabar, String theory on AdS3 × S3 × S3 × S1, Phys. Lett.B 449 (1999) 180 [hep-th/9811245] [INSPIRE]. · Zbl 1058.81649
[4] S. Gukov, E. Martinec, G.W. Moore and A. Strominger, The search for a holographic dual to AdS3 × S3 × S3 × S1, Adv. Theor. Math. Phys.9 (2005) 435 [hep-th/0403090] [INSPIRE]. · Zbl 0593.58007
[5] L. Eberhardt, M.R. Gaberdiel, R. Gopakumar and W. Li, BPS spectrum on AdS3 × S3 × S3 × S1, JHEP03 (2017) 124 [arXiv:1701.03552] [INSPIRE].
[6] M. Baggio, O. Ohlsson Sax, A. Sfondrini, B. Stefanski and A. Torrielli, Protected string spectrum in AdS3/CFT2from worldsheet integrability, JHEP04 (2017) 091 [arXiv:1701.03501] [INSPIRE]. · Zbl 1378.81104
[7] L. Eberhardt, M.R. Gaberdiel and W. Li, A holographic dual for string theory on AdS3 × S3 × S3 × S1, JHEP08 (2017) 111 [arXiv:1707.02705] [INSPIRE].
[8] J.M. Maldacena and H. Ooguri, Strings in AdS3and SL(2, ℝ) WZW model 1.: The spectrum, J. Math. Phys.42 (2001) 2929 [hep-th/0001053] [INSPIRE]. · Zbl 1036.81033
[9] A. Donos and J.P. Gauntlett, Flowing from AdS5to AdS3with T1,1, JHEP08 (2014) 006 [arXiv:1404.7133] [INSPIRE].
[10] N. Kim, AdS3solutions of IIB supergravity from D3-branes, JHEP01 (2006) 094 [hep-th/0511029] [INSPIRE]. · Zbl 1333.81331
[11] C. Couzens, C. Lawrie, D. Martelli, S. Schäfer-Nameki and J.-M. Wong, F-theory and AdS3/CFT2, JHEP08 (2017) 043 [arXiv:1705.04679] [INSPIRE]. · Zbl 1381.81110
[12] L. Wulff, All symmetric AdSn>2solutions of type II supergravity, J. Phys.A 50 (2017) 495402 [arXiv:1706.02118] [INSPIRE]. · Zbl 1382.83124
[13] D. Berenstein and R.G. Leigh, Space-time supersymmetry in AdS3backgrounds, Phys. Lett.B 458 (1999) 297 [hep-th/9904040] [INSPIRE]. · Zbl 0987.81538
[14] A. Giveon and M. Roček, Supersymmetric string vacua on AdS3 × N, JHEP04 (1999) 019 [hep-th/9904024] [INSPIRE]. · Zbl 0953.81075
[15] S. Datta, L. Eberhardt and M.R. Gaberdiel, \[StringyN=22 \mathcal{N}=\left(2,2\right)\] holography for AdS3, JHEP01 (2018) 146 [arXiv:1709.06393] [INSPIRE]. · Zbl 1384.81095
[16] J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys.A 16 (2001) 822 [hep-th/0007018] [INSPIRE]. · Zbl 1005.81075
[17] A. Strominger, Superstrings with Torsion, Nucl. Phys.B 274 (1986) 253 [INSPIRE].
[18] G. Lopes Cardoso, G. Curio, G. Dall’Agata, D. Lüst, P. Manousselis and G. Zoupanos, Non-Kähler string backgrounds and their five torsion classes, Nucl. Phys.B 652 (2003) 5 [hep-th/0211118] [INSPIRE]. · Zbl 1010.83063
[19] S.W. Beck, J.B. Gutowski and G. Papadopoulos, Geometry and supersymmetry of heterotic warped flux AdS backgrounds, JHEP07 (2015) 152 [arXiv:1505.01693] [INSPIRE]. · Zbl 1388.83734
[20] H. Lü, C.N. Pope and J. Rahmfeld, A construction of Killing spinors on Sn, J. Math. Phys.40 (1999) 4518 [hep-th/9805151] [INSPIRE]. · Zbl 0979.53053
[21] Y. Fujii and K. Yamagishi, Killing spinors on spheres and hyperbolic manifolds, J. Math. Phys.27 (1986) 979 [INSPIRE]. · Zbl 0593.58007
[22] J.P. Gauntlett and S. Pakis, The geometry of D = 11 Killing spinors, JHEP04 (2003) 039 [hep-th/0212008] [INSPIRE]. · Zbl 1388.83734
[23] J.P. Gauntlett, D. Martelli, S. Pakis and D. Waldram, G structures and wrapped NS5-branes, Commun. Math. Phys.247 (2004) 421 [hep-th/0205050] [INSPIRE]. · Zbl 1061.81058
[24] D. Martelli and J. Sparks, G structures, fluxes and calibrations in M-theory, Phys. Rev.D 68 (2003) 085014 [hep-th/0306225] [INSPIRE].
[25] E.J. Hackett-Jones and D.J. Smith, Type IIB Killing spinors and calibrations, JHEP11 (2004) 029 [hep-th/0405098] [INSPIRE].
[26] J.P. Gauntlett, O.A.P. Mac Conamhna, T. Mateos and D. Waldram, Supersymmetric AdS3solutions of type IIB supergravity, Phys. Rev. Lett.97 (2006) 171601 [hep-th/0606221] [INSPIRE]. · Zbl 1228.83112
[27] J.P. Gauntlett, O.A.P. Mac Conamhna, T. Mateos and D. Waldram, New supersymmetric AdS3solutions, Phys. Rev.D 74 (2006) 106007 [hep-th/0608055] [INSPIRE]. · Zbl 1228.83112
[28] S. Chiossi and S. Salamon, The intrinsic torsion of SU(3) and G2structures, math/0202282 [INSPIRE]. · Zbl 1024.53018
[29] V. Apostolov, T. Draghici and A. Moroianu, A splitting theorem for Kähler manifolds with constant eigenvalues of the Ricci tensor, math/0007122. · Zbl 1111.53303
[30] C. Bär, Real Killing spinors and holonomy, Comm. Math. Phys.154 (1993) 509. · Zbl 0778.53037
[31] D. Kutasov, F. Larsen and R.G. Leigh, String theory in magnetic monopole backgrounds, Nucl. Phys.B 550 (1999) 183 [hep-th/9812027] [INSPIRE]. · Zbl 0947.81078
[32] W. Barth, K. Hulek, C. Peters and A. Van de Ven, Compact Complex Surfaces, Springer Science & Business Media, Berlin, Germany (2004). · Zbl 1036.14016
[33] J. de Boer, Six-dimensional supergravity on S3 × AdS3and 2-D conformal field theory, Nucl. Phys.B 548 (1999) 139 [hep-th/9806104] [INSPIRE].
[34] R. Dijkgraaf, G.W. Moore, E.P. Verlinde and H.L. Verlinde, Elliptic genera of symmetric products and second quantized strings, Commun. Math. Phys.185 (1997) 197 [hep-th/9608096] [INSPIRE]. · Zbl 0872.32006
[35] J.M. Maldacena, G.W. Moore and A. Strominger, Counting BPS black holes in toroidal Type II string theory, hep-th/9903163 [INSPIRE]. · Zbl 0355.32028
[36] J. de Boer, Large N elliptic genus and AdS/CFT correspondence, JHEP05 (1999) 017 [hep-th/9812240] [INSPIRE]. · Zbl 1017.81041
[37] A. Donos, J.P. Gauntlett and N. Kim, AdS Solutions Through Transgression, JHEP09 (2008) 021 [arXiv:0807.4375] [INSPIRE]. · Zbl 1245.83060
[38] M. Baggio, M.R. Gaberdiel and C. Peng, Higher spins in the symmetric orbifold of K3, Phys. Rev.D 92 (2015) 026007 [arXiv:1504.00926] [INSPIRE].
[39] M.R. Gaberdiel and R. Gopakumar, Higher Spins & Strings, JHEP11 (2014) 044 [arXiv:1406.6103] [INSPIRE]. · Zbl 1333.81331
[40] T. Eguchi and K. Hikami, Enriques moonshine, J. Phys.A 46 (2013) 312001 [arXiv:1301.5043] [INSPIRE]. · Zbl 1245.83060
[41] S.-T. Yau, Calabi’s Conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci.74 (1977) 1798 [INSPIRE]. · Zbl 0355.32028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.