×

Adaptive quantile estimation in deconvolution with unknown error distribution. (English) Zbl 1388.62095

Summary: Quantile estimation in deconvolution problems is studied comprehensively. In particular, the more realistic setup of unknown error distributions is covered. Our plug-in method is based on a deconvolution density estimator and is minimax optimal under minimal and natural conditions. This closes an important gap in the literature. Optimal adaptive estimation is obtained by a data-driven bandwidth choice. As a side result, we obtain optimal rates for the plug-in estimation of distribution functions with unknown error distributions. The method is applied to a real data example.

MSC:

62G07 Density estimation
62G20 Asymptotic properties of nonparametric inference
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] Carroll, R.J. and Hall, P. (1988). Optimal rates of convergence for deconvolving a density. J. Amer. Statist. Assoc. 83 1184-1186. · Zbl 0673.62033
[2] Carroll, R.J., Ruppert, D., Stefanski, L.A. and Crainiceanu, C.M. (2006). Measurement Error in Nonlinear Models : A Modern Perspective , 2nd ed. Monographs on Statistics and Applied Probability 105 . Boca Raton, FL: Chapman & Hall/CRC. · Zbl 1119.62063
[3] Comte, F. and Lacour, C. (2011). Data-driven density estimation in the presence of additive noise with unknown distribution. J. R. Stat. Soc. Ser. B Stat. Methodol. 73 601-627. · Zbl 1226.62034
[4] Dattner, I., Goldenshluger, A. and Juditsky, A. (2011). On deconvolution of distribution functions. Ann. Statist. 39 2477-2501. · Zbl 1232.62056
[5] Dattner, I. and Reiser, B. (2013). Estimation of distribution functions in measurement error models. J. Statist. Plann. Inference 143 479-493. · Zbl 1428.62142
[6] Delaigle, A., Hall, P. and Meister, A. (2008). On deconvolution with repeated measurements. Ann. Statist. 36 665-685. · Zbl 1133.62026
[7] Dudley, R.M. (1992). Fréchet differentiability, \(p\)-variation and uniform Donsker classes. Ann. Probab. 20 1968-1982. · Zbl 0778.60026
[8] Fan, J. (1991). On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Statist. 19 1257-1272. · Zbl 0729.62033
[9] Frese, E.M., Fick, A. and Sadowsky, H.S. (2011). Blood pressure measurement guidelines for physical therapists. Cardiopulm. Phys. Ther. J. 22 5-12.
[10] Girardi, M. and Weis, L. (2003). Operator-valued Fourier multiplier theorems on Besov spaces. Math. Nachr. 251 34-51. · Zbl 1077.46024
[11] Goldenshluger, A. and Nemirovski, A. (1997). On spatially adaptive estimation of nonparametric regression. Math. Methods Statist. 6 135-170. · Zbl 0892.62018
[12] Hall, P. and Lahiri, S.N. (2008). Estimation of distributions, moments and quantiles in deconvolution problems. Ann. Statist. 36 2110-2134. · Zbl 1148.62028
[13] Johannes, J. (2009). Deconvolution with unknown error distribution. Ann. Statist. 37 2301-2323. · Zbl 1173.62018
[14] Johannes, J. and Schwarz, M. (2013). Adaptive circular deconvolution by model selection under unknown error distribution. Bernoulli 19 1576-1611. · Zbl 1280.62044
[15] Kannel, W.B. (1995). Framingham study insights into hypertensive risk of cardiovascular disease. Hypertension Research : Official Journal of the Japanese Society of Hypertension 18 181-196.
[16] Kappus, J. (2014). Adaptive nonparametric estimation for Lévy processes observed at low frequency. Stochastic Process. Appl. 124 730-758. · Zbl 1279.62171
[17] Lepskiĭ, O.V. (1990). A problem of adaptive estimation in Gaussian white noise. Teor. Veroyatn. Primen. 35 459-470.
[18] Lounici, K. and Nickl, R. (2011). Global uniform risk bounds for wavelet deconvolution estimators. Ann. Statist. 39 201-231. · Zbl 1209.62060
[19] Massart, P. (2007). Concentration Inequalities and Model Selection. Lecture Notes in Math. 1896 . Berlin: Springer. · Zbl 1170.60006
[20] Meister, A. (2004). On the effect of misspecifying the error density in a deconvolution problem. Canad. J. Statist. 32 439-449. · Zbl 1059.62034
[21] Neumann, M.H. (1997). On the effect of estimating the error density in nonparametric deconvolution. J. Nonparametr. Stat. 7 307-330. · Zbl 1003.62514
[22] Neumann, M.H. (2007). Deconvolution from panel data with unknown error distribution. J. Multivariate Anal. 98 1955-1968. · Zbl 1206.62063
[23] Neumann, M.H. and Reiß, M. (2009). Nonparametric estimation for Lévy processes from low-frequency observations. Bernoulli 15 223-248. · Zbl 1200.62095
[24] Nickl, R. and Reiß, M. (2012). A Donsker theorem for Lévy measures. J. Funct. Anal. 263 3306-3332. · Zbl 1310.60056
[25] Rosenthal, H.P. (1970). On the subspaces of \(L^{p}\) \((p>2)\) spanned by sequences of independent random variables. Israel J. Math. 8 273-303. · Zbl 0213.19303
[26] Söhl, J. and Trabs, M. (2012). A uniform central limit theorem and efficiency for deconvolution estimators. Electron. J. Stat. 6 2486-2518. · Zbl 1295.62034
[27] Spokoiny, V.G. (1996). Adaptive hypothesis testing using wavelets. Ann. Statist. 24 2477-2498. · Zbl 0898.62056
[28] Stirnemann, J.J., Comte, F. and Samson, A. (2012). Density estimation of a biomedical variable subject to measurement error using an auxiliary set of replicate observations. Stat. Med. 31 4154-4163.
[29] Triebel, H. (2010). Theory of Function Spaces. Modern Birkhäuser Classics . Basel: Birkhäuser. Reprint of 1983 edition [MR0730762], Also published in 1983 by Birkhäuser Verlag [MR0781540]. · Zbl 1235.46002
[30] Tsybakov, A.B. (2009). Introduction to Nonparametric Estimation. Springer Series in Statistics . New York: Springer. Revised and extended from the 2004 French original, Translated by Vladimir Zaiats.
[31] van der Vaart, A.W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 3 . Cambridge: Cambridge Univ. Press. · Zbl 0910.62001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.