Hübener, R.; Sekino, Y.; Eisert, J. Equilibration in low-dimensional quantum matrix models. (English) Zbl 1388.81014 J. High Energy Phys. 2015, No. 4, Paper No. 166, 18 p. (2015). Summary: Matrix models play an important role in studies of quantum gravity, being candidates for a formulation of M-theory, but are notoriously difficult to solve. In this work, we present a fresh approach by introducing a novel exact model, provably equivalent with a low-dimensional bosonic matrix model, which is on its own a well-known, unsolved model of quantum chaos. In our equivalent reformulation local structure becomes apparent, facilitating analytical and precise numerical study. We derive a substantial part of the low energy spectrum, find a conserved charge, and are able to derive numerically the Regge trajectories. To exemplify the usefulness of the approach, we address questions of equilibration starting from a non-equilibrium situation, building upon an intuition from quantum information. We finally discuss possible generalisations of the approach. Cited in 5 Documents MSC: 81P05 General and philosophical questions in quantum theory 83C45 Quantization of the gravitational field Keywords:M(atrix) theories; matrix models; field theories in lower dimensions; gauge symmetry PDF BibTeX XML Cite \textit{R. Hübener} et al., J. High Energy Phys. 2015, No. 4, Paper No. 166, 18 p. (2015; Zbl 1388.81014) Full Text: DOI arXiv References: [1] T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev.D 55 (1997) 5112 [hep-th/9610043] [INSPIRE]. [2] P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP09 (2007) 120 [arXiv:0708.4025] [INSPIRE]. [3] Y. Sekino and L. Susskind, Fast scramblers, JHEP10 (2008) 065 [arXiv:0808.2096] [INSPIRE]. [4] M.R. Douglas, D.N. Kabat, P. Pouliot and S.H. Shenker, D-branes and short distances in string theory, Nucl. Phys.B 485 (1997) 85 [hep-th/9608024] [INSPIRE]. · Zbl 0925.81232 [5] Y. Okawa and T. Yoneya, Multibody interactions of D particles in supergravity and matrix theory, Nucl. Phys.B 538 (1999) 67 [hep-th/9806108] [INSPIRE]. · Zbl 0940.83026 [6] W. Taylor and M. Van Raamsdonk, Supergravity currents and linearized interactions for matrix theory configurations with fermionic backgrounds, JHEP04 (1999) 013 [hep-th/9812239] [INSPIRE]. [7] M. Hanada, J. Nishimura, Y. Sekino and T. Yoneya, Monte Carlo studies of matrix theory correlation functions, Phys. Rev. Lett.104 (2010) 151601 [arXiv:0911.1623] [INSPIRE]. [8] M. Hanada, J. Nishimura, Y. Sekino and T. Yoneya, Direct test of the gauge-gravity correspondence for matrix theory correlation functions, JHEP12 (2011) 020 [arXiv:1108.5153] [INSPIRE]. · Zbl 1306.81107 [9] Y. Sekino and T. Yoneya, Generalized AdS/CFT correspondence for matrix theory in the large-N limit, Nucl. Phys.B 570 (2000) 174 [hep-th/9907029] [INSPIRE]. · Zbl 0951.81057 [10] Y. Sekino, Supercurrents in matrix theory and the generalized AdS/CFT correspondence, Nucl. Phys.B 602 (2001) 147 [hep-th/0011122] [INSPIRE]. · Zbl 1097.81728 [11] G.K. Savvidy, Yang-Mills classical mechanics as a Kolmogorov K system, Phys. Lett.B 130 (1983) 303 [INSPIRE]. [12] G.K. Savvidy, Classical and quantum mechanics of non-Abelian gauge fields, Nucl. Phys.B 246 (1984) 302 [INSPIRE]. [13] T. Furusawa, Onset of chaos in the classical SU(2) Yang-Mills theory, Nucl. Phys.B 290 (1987) 469 [INSPIRE]. [14] M.P. Joy and M. Sabir, Nonintegrability of SU(2) Yang-Mills and Yang-Mills Higgs systems, J. Phys.A 22 (1989) 5153 [INSPIRE]. · Zbl 0714.58048 [15] T. Kunihiro et al., Chaotic behavior in classical Yang-Mills dynamics, Phys. Rev.D 82 (2010) 114015 [arXiv:1008.1156] [INSPIRE]. [16] P. Olesen, Confinement and random fields, Nucl. Phys.B 200 (1982) 381 [INSPIRE]. [17] N. Linden, S. Popescu, A.J. Short and A. Winter, Quantum mechanical evolution towards thermal equilibrium, Phys. Rev.E 79 (2009) 061103 [arXiv:0812.2385]. [18] M. Cramer, C.M. Dawson, J. Eisert and T.J. Osborne, Exact relaxation in a class of nonequilibrium quantum lattice systems, Phys. Rev. Lett.100 (2008) 030602 [INSPIRE]. [19] A. Riera, C. Gogolin and J. Eisert, Thermalization in nature and on a quantum computer, Phys. Rev. Lett.108 (2012) 080402 [arXiv:1102.2389]. [20] C. Asplund, D. Berenstein and D. Trancanelli, Evidence for fast thermalization in the plane-wave matrix model, Phys. Rev. Lett.107 (2011) 171602 [arXiv:1104.5469] [INSPIRE]. [21] C.T. Asplund, D. Berenstein and E. Dzienkowski, Large-N classical dynamics of holographic matrix models, Phys. Rev.D 87 (2013) 084044 [arXiv:1211.3425] [INSPIRE]. [22] N. Lashkari, D. Stanford, M. Hastings, T. Osborne and P. Hayden, Towards the fast scrambling conjecture, JHEP04 (2013) 022 [arXiv:1111.6580] [INSPIRE]. · Zbl 1342.81374 [23] P. Riggins and V. Sahakian, On black hole thermalization, D0 brane dynamics and emergent spacetime, Phys. Rev.D 86 (2012) 046005 [arXiv:1205.3847] [INSPIRE]. [24] L. Brady and V. Sahakian, Scrambling with matrix black holes, Phys. Rev.D 88 (2013) 046003 [arXiv:1306.5200] [INSPIRE]. [25] S. Pramodh and V. Sahakian, From black hole to qubits: matrix theory is a fast scrambler, arXiv:1412.2396 [INSPIRE]. · Zbl 1388.83497 [26] G. Mandal and T. Morita, Quantum quench in matrix models: dynamical phase transitions, selective equilibration and the generalized Gibbs ensemble, JHEP10 (2013) 197 [arXiv:1302.0859] [INSPIRE]. [27] N. Iizuka, D. Kabat, S. Roy and D. Sarkar, Black hole formation in fuzzy sphere collapse, Phys. Rev.D 88 (2013) 044019 [arXiv:1306.3256] [INSPIRE]. [28] R.G. Leigh, D. Minic and A. Yelnikov, On the glueball spectrum of pure Yang-Mills theory in 2+1 dimensions,Phys. Rev.D 76 (2007) 065018 [hep-th/0604060] [INSPIRE]. [29] M. Campostrini and J. Wosiek, High precision study of the structure of D = 4 supersymmetric Yang-Mills quantum mechanics, Nucl. Phys.B 703 (2004) 454 [hep-th/0407021] [INSPIRE]. · Zbl 1198.81172 [30] E. Chalbaud, J.-P. Gallinar and G. Mata, The quantum harmonic oscillator on a lattice, J. Phys.A 19 (1986) L385. [31] M.B. Green, J.H. Schwarz and E. Witten, Superstring theory, vol. 1, Cambridge Univ. Pr., Cambridge U.K. (1987). · Zbl 0619.53002 [32] H.B. Meyer and M.J. Teper, Glueball Regge trajectories in (2 + 1)-dimensional gauge theories, Nucl. Phys.B 668 (2003) 111 [hep-lat/0306019] [INSPIRE]. · Zbl 1031.81555 [33] D. Berenstein, private communication. [34] B. Collins, Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability, Int. Math. Res. Not.17 (2003) 953 [math-ph/0205010]. · Zbl 1049.60091 [35] B. Collins and P. Sniady, Integration with respect to the Haar measure on unitary, orthogonal and symplectic group, Commun. Math. Phys.264 (2006) 773 [math-ph/0402073]. · Zbl 1108.60004 [36] A.J. Short, Equilibration of quantum systems and subsystems, New J. Phys.13 (2011) 053009 [arXiv:1012.4622]. · Zbl 1448.81405 [37] A.J. Short and T.C. Farrelly, Quantum equilibration in finite time, New J. Phys.14 (2012) 013063 [arXiv:1110.5759]. · Zbl 1448.81406 [38] G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys.B 72 (1974) 461 [INSPIRE]. [39] H. Yukawa, Quantum theory of nonlocal fields. 1. Free fields, Phys. Rev.77 (1950) 219 [INSPIRE]. · Zbl 0036.26705 [40] M.A. Nielsen, A geometric approach to quantum circuit lower bounds, Quant. Informat. Comput.6 (2006) 213 [quant-ph/0502070]. · Zbl 1152.81788 [41] M.A. Nielsen and M.R. Dowling, The geometry of quantum computation, Quant. Informat. Comput.8 (2008) 861 [quant-ph/0701004]. · Zbl 1158.81313 [42] C.E. Mora and H.J. Briegel, Algorithmic complexity of quantum states, Int. J. Quant. Inform.4 (2006) 715 [quant-ph/0412172]. · Zbl 1099.81020 [43] D. Stanford and L. Susskind, Complexity and shock wave geometries, Phys. Rev.D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE]. [44] L. Susskind, Entanglement is not enough, arXiv:1411.0690 [INSPIRE]. · Zbl 1429.81021 [45] L. Masanes, A.J. Roncaglia and A. Acin, The complexity of energy eigenstates as a mechanism for equilibration, Phys. Rev.E 87 (2013) 032137 [arXiv:1108.0374]. [46] Y. Ge and J. Eisert, Area laws and efficient descriptions of quantum many-body states, arXiv:1411.2995. · Zbl 1456.81065 [47] M. Müller, Quantum Kolmogorov complexity and the quantum Turing machine, Ph.D. thesis, Technical University of Berlin, Berlin Germany (2007) [arXiv:0712.4377]. [48] A.S.L. Malabarba, L.P. Garcia-Pintos, N. Linden, T.C. Farrelly and A.J. Short, Quantum systems equilibrate rapidly for most observables, Phys. Rev.E 90 (2014) 012121 [arXiv:1402.1093]. [49] D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N =4 super Yang-Mills, JHEP04 (2002) 013 [hep-th/0202021] [INSPIRE]. [50] S. Sethi and M. Stern, D-brane bound states redux, Commun. Math. Phys.194 (1998) 675 [hep-th/9705046] [INSPIRE]. · Zbl 0911.53052 [51] Y.-H. Lin and X. Yin, On the ground state wave function of matrix theory, arXiv:1402.0055 [INSPIRE]. · Zbl 1388.81153 [52] B. de Wit, M. Lüscher and H. Nicolai, The supermembrane is unstable, Nucl. Phys.B 320 (1989) 135 [INSPIRE]. [53] M. Hanada, Y. Hyakutake, J. Nishimura and S. Takeuchi, Higher derivative corrections to black hole thermodynamics from supersymmetric matrix quantum mechanics, Phys. Rev. Lett.102 (2009) 191602 [arXiv:0811.3102] [INSPIRE]. [54] M. Hanada, Y. Hyakutake, G. Ishiki and J. Nishimura, Holographic description of quantum black hole on a computer, Science344 (2014) 882 [arXiv:1311.5607] [INSPIRE]. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.