New \(\mathrm{AdS}_{3}\times S^{2}\) T-duals with \(\mathcal{N}=(0,4)\) supersymmetry. (English) Zbl 1388.81861

Summary: It is well known that Hopf-fibre T-duality and uplift takes the D1-D5 near-horizon into a class of \(\mathrm{AdS}_3\times S^2\) geometries in 11D where the internal space is a Calabi-Yau three-fold. Moreover, supersymmetry dictates that Calabi-Yau is the only permissible \(\mathrm{ SU}(3)\)-structure manifold. Generalising this duality chain to non-abelian isometries, a strong parallel exists, resulting in the first explicit example of a class of \(\mathrm{AdS}_3\times S^2\) geometries with \(\mathrm{ SU}(2)\)-structure. Furthermore, the non-abelian T-dual of \(\mathrm{AdS}_3\times S^3\times S^3\times S^1\) results in a new supersymmetric \(\mathrm{AdS}_3\times S^2\) geometry, which falls outside of all known classifications. We explore the basic properties of the holographic duals associated to the new backgrounds. We compute the central charges and show that they are compatible with a large \(\mathcal N=4\) superconformal algebra in the infra-red.


81T60 Supersymmetric field theories in quantum mechanics
Full Text: DOI arXiv


[1] J.P. Gauntlett, O.A.P. Mac Conamhna, T. Mateos and D. Waldram, AdS spacetimes from wrapped M 5 branes, JHEP11 (2006) 053 [hep-th/0605146] [INSPIRE].
[2] H. Kim, K.K. Kim and N. Kim, 1/4-BPS M-theory bubbles with SO(3) × SO(4) symmetry, JHEP08 (2007) 050 [arXiv:0706.2042] [INSPIRE]. · Zbl 1326.81160
[3] H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP10 (2004) 025 [hep-th/0409174] [INSPIRE].
[4] J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP12 (1997) 002 [hep-th/9711053] [INSPIRE].
[5] N. Gaddam, A. Gnecchi, S. Vandoren and O. Varela, Rholography, black holes and Scherk-Schwarz, JHEP06 (2015) 058 [arXiv:1412.7325] [INSPIRE]. · Zbl 1388.83801
[6] D. Gaiotto, N = 2 dualities, JHEP08 (2012) 034 [arXiv:0904.2715] [INSPIRE].
[7] D. Gaiotto and J. Maldacena, The gravity duals of N = 2 superconformal field theories, JHEP10 (2012) 189 [arXiv:0904.4466] [INSPIRE]. · Zbl 1397.83038
[8] D. Joyce, Lectures on special Lagrangian geometry, math/0111111 [INSPIRE]. · Zbl 1102.53037
[9] J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys.A 16 (2001) 822 [hep-th/0007018] [INSPIRE]. · Zbl 0984.83052
[10] A. Fayyazuddin and D.J. Smith, Localized intersections of M 5-branes and four-dimensional superconformal field theories, JHEP04 (1999) 030 [hep-th/9902210] [INSPIRE]. · Zbl 0956.83056
[11] E. ÓColgáin and B. Stefanski, Jr., A search for AdS5 × S2IIB supergravity solutions dual to N =2 SCFTs, JHEP10 (2011) 061 [arXiv:1107.5763] [INSPIRE]. · Zbl 1303.81132
[12] R.A. Reid-Edwards and B. Stefanski Jr., On Type IIA geometries dual to N = 2 SCFTs, Nucl. Phys.B 849 (2011) 549 [arXiv:1011.0216] [INSPIRE]. · Zbl 1215.83058
[13] A. Donos and J. Simon, The electrostatic view on M-theory LLM geometries, JHEP01 (2011) 067 [arXiv:1010.3101] [INSPIRE]. · Zbl 1214.81152
[14] O. Aharony, L. Berdichevsky and M. Berkooz, 4D N = 2 superconformal linear quivers with type IIA duals, JHEP08 (2012) 131 [arXiv:1206.5916] [INSPIRE]. · Zbl 1397.81289
[15] P.M. Petropoulos, K. Sfetsos and K. Siampos, Gravity duals \[ofN=2 \mathcal{N}=2\] superconformal field theories with no electrostatic description, JHEP11 (2013) 118 [arXiv:1308.6583] [INSPIRE].
[16] P.M. Petropoulos, K. Sfetsos and K. Siampos, Gravity duals \[ofN=2 \mathcal{N}=2\] SCFTs and asymptotic emergence of the electrostatic description, JHEP09 (2014) 057 [arXiv:1406.0853] [INSPIRE]. · Zbl 1333.83132
[17] K. Sfetsos and D.C. Thompson, On non-abelian T-dual geometries with Ramond fluxes, Nucl. Phys.B 846 (2011) 21 [arXiv:1012.1320] [INSPIRE]. · Zbl 1208.81173
[18] O.A.P. Mac Conamhna and E. Ó Colgáin, Supersymmetric wrapped membranes, AdS2spaces and bubbling geometries, JHEP03 (2007) 115 [hep-th/0612196] [INSPIRE].
[19] E. Ó Colgáin, J.-B. Wu and H. Yavartanoo, On the generality of the LLM geometries in M-theory, JHEP04 (2011) 002 [arXiv:1010.5982] [INSPIRE]. · Zbl 1250.81088
[20] E. Ó Colgáin, Beyond LLM in M-theory, JHEP12 (2012) 023 [arXiv:1208.5979] [INSPIRE]. · Zbl 1397.81276
[21] T. Ortiz, H. Samtleben and D. Tsimpis, Matrix model holography, JHEP12 (2014) 096 [arXiv:1410.0487] [INSPIRE].
[22] E. Ó Colgáin, J.-B. Wu and H. Yavartanoo, Supersymmetric AdS3 × S2M-theory geometries with fluxes, JHEP08 (2010) 114 [arXiv:1005.4527] [INSPIRE].
[23] J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS5solutions of M-theory, Class. Quant. Grav.21 (2004) 4335 [hep-th/0402153] [INSPIRE]. · Zbl 1059.83038
[24] O. Kelekci, E. Ó Colgáin and J. Montero, work in progress.
[25] G. Itsios, C. Núñez, K. Sfetsos and D.C. Thompson, On non-abelian T-duality and new N =1 backgrounds, Phys. Lett.B 721 (2013) 342 [arXiv:1212.4840] [INSPIRE]. · Zbl 1309.83091
[26] K. Sfetsos and D.C. Thompson, \[NewN=1 \mathcal{N}=1\] supersymmetric AdS5backgrounds in type IIA supergravity, JHEP11 (2014) 006 [arXiv:1408.6545] [INSPIRE]. · Zbl 1333.83257
[27] N.T. Macpherson, C. Núñez, L.A. Pando Zayas, V.G.J. Rodgers and C.A. Whiting, Type IIB supergravity solutions with AdS5from Abelian and non-Abelian T dualities, JHEP02 (2015) 040 [arXiv:1410.2650] [INSPIRE]. · Zbl 1387.83113
[28] Y. Bea et al., Compactifications of the Klebanov-Witten CFT and new AdS3backgrounds, JHEP05 (2015) 062 [arXiv:1503.07527] [INSPIRE].
[29] A. Barranco, J. Gaillard, N.T. Macpherson, C. Núñez and D.C. Thompson, G-structures and flavouring non-Abelian T-duality, JHEP08 (2013) 018 [arXiv:1305.7229] [INSPIRE].
[30] N.T. Macpherson, Non-Abelian T-duality, G2-structure rotation and holographic duals of N =1 Chern-Simons theories, JHEP11 (2013) 137 [arXiv:1310.1609] [INSPIRE]. · Zbl 1342.81451
[31] J. Gaillard, N.T. Macpherson, C. Núñez and D.C. Thompson, Dualising the baryonic branch: dynamic SU(2) and confining backgrounds in IIA, Nucl. Phys.B 884 (2014) 696 [arXiv:1312.4945] [INSPIRE]. · Zbl 1323.81092
[32] E. Caceres, N.T. Macpherson and C. Núñez, New type IIB backgrounds and aspects of their field theory duals, JHEP08 (2014) 107 [arXiv:1402.3294] [INSPIRE].
[33] K.S. Kooner and S. Zacarías, Non-abelian T-dualizing the resolved conifold with regular and fractional D3-branes, arXiv:1411.7433 [INSPIRE]. · Zbl 1388.83844
[34] S. Zacarías, Semiclassical strings and non-abelian T-duality, Phys. Lett.B 737 (2014) 90 [arXiv:1401.7618] [INSPIRE]. · Zbl 1317.81226
[35] P.M. Pradhan, Oscillating strings and non-abelian T-dual Klebanov-Witten background, Phys. Rev.D 90 (2014) 046003 [arXiv:1406.2152] [INSPIRE].
[36] E. Gevorgyan and G. Sarkissian, Defects, non-abelian T-duality and the Fourier-Mukai transform of the Ramond-Ramond fields, JHEP03 (2014) 035 [arXiv:1310.1264] [INSPIRE]. · Zbl 1333.81333
[37] Y. Lozano, E. Ó Colgáin, D. Rodriguez-Gomez and K. Sfetsos, Supersymmetric AdS6via T duality, Phys. Rev. Lett.110 (2013) 231601 [arXiv:1212.1043] [INSPIRE].
[38] A. Passias, A note on supersymmetric AdS6solutions of massive type IIA supergravity, JHEP01 (2013) 113 [arXiv:1209.3267] [INSPIRE]. · Zbl 1342.83501
[39] F. Apruzzi, M. Fazzi, A. Passias, D. Rosa and A. Tomasiello, AdS6solutions of type-II supergravity, JHEP11 (2014) 099 [Erratum ibid.1505 (2015) 012] [arXiv:1406.0852] [INSPIRE].
[40] H. Kim, N. Kim and M. Suh, Supersymmetric AdS6solutions of type IIB supergravity, arXiv:1506.05480 [INSPIRE].
[41] A. Brandhuber and Y. Oz, The D4-D8 brane system and five-dimensional fixed points, Phys. Lett.B 460 (1999) 307 [hep-th/9905148] [INSPIRE]. · Zbl 0987.81590
[42] Y. Lozano, N.T. Macpherson and J. Montero, \[AN=2 \mathcal{N}=2\] supersymmetric AdS4solution in M-theory with purely magnetic flux, arXiv:1507.02660 [INSPIRE]. · Zbl 1388.81860
[43] M. Pernici and E. Sezgin, Spontaneous compactification of seven-dimensional supergravity theories, Class. Quant. Grav.2 (1985) 673 [INSPIRE]. · Zbl 0576.53074
[44] O. DeWolfe, A. Hanany, A. Iqbal and E. Katz, Five-branes, seven-branes and five-dimensional E(n) field theories, JHEP03 (1999) 006 [hep-th/9902179] [INSPIRE]. · Zbl 0965.81091
[45] Y. Lozano, E. Ó Colgáin and D. Rodriguez-Gomez, Hints of 5D fixed point theories from non-abelian T-duality, JHEP05 (2014) 009 [arXiv:1311.4842] [INSPIRE]. · Zbl 1333.83249
[46] T. Dimofte, D. Gaiotto and S. Gukov, Gauge theories labelled by three-manifolds, Commun. Math. Phys.325 (2014) 367 [arXiv:1108.4389] [INSPIRE]. · Zbl 1292.57012
[47] T.R. Araujo and H. Nastase, \[N=1 \mathcal{N}=1\] SUSY backgrounds with an AdS factor from non-Abelian T duality, Phys. Rev.D 91 (2015) 126015 [arXiv:1503.00553] [INSPIRE].
[48] I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys.B 536 (1998) 199 [hep-th/9807080] [INSPIRE]. · Zbl 0948.81619
[49] G. Itsios, C. Núñez, K. Sfetsos and D.C. Thompson, Non-Abelian T-duality and the AdS/CFT correspondence:new N = 1 backgrounds, Nucl. Phys.B 873 (2013) 1 [arXiv:1301.6755] [INSPIRE]. · Zbl 1282.81147
[50] I. Bah, C. Beem, N. Bobev and B. Wecht, AdS/CFT dual pairs from M 5-branes on Riemann surfaces, Phys. Rev.D 85 (2012) 121901 [arXiv:1112.5487] [INSPIRE].
[51] I. Bah, C. Beem, N. Bobev and B. Wecht, Four-dimensional SCFTs from M 5-branes, JHEP06 (2012) 005 [arXiv:1203.0303] [INSPIRE].
[52] F. Benini, Y. Tachikawa and B. Wecht, Sicilian gauge theories and N = 1 dualities, JHEP01 (2010) 088 [arXiv:0909.1327] [INSPIRE]. · Zbl 1269.81080
[53] O. Kelekci, Y. Lozano, N.T. Macpherson and E. Ó Colgáin, Supersymmetry and non-Abelian T-duality in type-II supergravity, Class. Quant. Grav.32 (2015) 035014 [arXiv:1409.7406] [INSPIRE]. · Zbl 1312.83033
[54] Y. Lozano and N.T. Macpherson, A new AdS4/CFT3dual with extended SUSY and a spectral flow, JHEP11 (2014) 115 [arXiv:1408.0912] [INSPIRE].
[55] J. Murugan and H. Nastase, A nonabelian particle-vortex duality, arXiv:1506.04090 [INSPIRE]. · Zbl 1367.81114
[56] P. Karndumri and E. Ó Colgáin, 3D Supergravity from wrapped D3-branes, JHEP10 (2013) 094 [arXiv:1307.2086] [INSPIRE]. · Zbl 1342.83486
[57] P.M. Cowdall and P.K. Townsend, Gauged supergravity vacua from intersecting branes, Phys. Lett.B 429 (1998) 281 [Erratum ibid.B 434 (1998) 458] [hep-th/9801165] [INSPIRE]. · Zbl 1355.83030
[58] S. Gukov, E. Martinec, G.W. Moore and A. Strominger, The search for a holographic dual to AdS3 × S3 × S3 × S1, Adv. Theor. Math. Phys.9 (2005) 435 [hep-th/0403090] [INSPIRE]. · Zbl 1121.81106
[59] J. de Boer, A. Pasquinucci and K. Skenderis, AdS/CFT dualities involving large 2 − D N =4 superconformal symmetry, Adv. Theor. Math. Phys.3(1999) 577 [hep-th/9904073] [INSPIRE]. · Zbl 0989.81088
[60] H.J. Boonstra, B. Peeters and K. Skenderis, Brane intersections, Anti-de Sitter space-times and dual superconformal theories, Nucl. Phys.B 533 (1998) 127 [hep-th/9803231] [INSPIRE]. · Zbl 0956.81060
[61] J.P. Gauntlett, R.C. Myers and P.K. Townsend, Supersymmetry of rotating branes, Phys. Rev.D 59 (1998) 025001 [hep-th/9809065] [INSPIRE].
[62] D. Tong, The holographic dual of AdS3 × S3 × S3 × S1, JHEP04 (2014) 193 [arXiv:1402.5135] [INSPIRE].
[63] S. Elitzur, O. Feinerman, A. Giveon and D. Tsabar, String theory on AdS3 × S3 × S3 × S1, Phys. Lett.B 449 (1999) 180 [hep-th/9811245] [INSPIRE]. · Zbl 1058.81649
[64] J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys.104 (1986) 207 [INSPIRE]. · Zbl 0584.53039
[65] A. Sevrin, W. Troost and A. Van Proeyen, Superconformal algebras in two-dimensions with N =4, Phys. Lett.B 208 (1988) 447[INSPIRE].
[66] G. Itsios, Y. Lozano, E. Ó Colgáin and K. Sfetsos, Non-abelian T-duality and consistent truncations in type-II supergravity, JHEP08 (2012) 132 [arXiv:1205.2274] [INSPIRE]. · Zbl 1397.83197
[67] E. Alvarez, L. Álvarez-Gaumé, J.L.F. Barbon and Y. Lozano, Some global aspects of duality in string theory, Nucl. Phys.B 415 (1994) 71 [hep-th/9309039] [INSPIRE]. · Zbl 1007.81529
[68] N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys.B 435 (1995) 129 [hep-th/9411149] [INSPIRE]. · Zbl 1020.81912
[69] I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χSBresolution of naked singularities, JHEP08 (2000) 052 [hep-th/0007191] [INSPIRE]. · Zbl 0986.83041
[70] I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys.B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE]. · Zbl 1219.81214
[71] S.F. Hassan, T duality, space-time spinors and RR fields in curved backgrounds, Nucl. Phys.B 568 (2000) 145 [hep-th/9907152] [INSPIRE]. · Zbl 0951.81045
[72] A. Donos and J.P. Gauntlett, Flowing from AdS5to AdS3with T1,1, JHEP08 (2014) 006 [arXiv:1404.7133] [INSPIRE].
[73] Y. Kosmann, A note on Lie-Lorentz derivatives, Annali Mat. Pura Appl.91 (1972) 317. · Zbl 0231.53065
[74] J. Jeong, O. Kelekci and E. Ó Colgáin, An alternative IIB embedding of F(4) gauged supergravity, JHEP05 (2013) 079 [arXiv:1302.2105] [INSPIRE]. · Zbl 1342.83484
[75] Y. Lozano, E. Ó Colgáin, K. Sfetsos and D.C. Thompson, Non-abelian T-duality, Ramond fields and coset geometries, JHEP06 (2011) 106 [arXiv:1104.5196] [INSPIRE]. · Zbl 1298.81316
[76] F. Apruzzi, M. Fazzi, D. Rosa and A. Tomasiello, All AdS7solutions of type-II supergravity, JHEP04 (2014) 064 [arXiv:1309.2949] [INSPIRE].
[77] F. Apruzzi, M. Fazzi, A. Passias and A. Tomasiello, Supersymmetric AdS5solutions of massive IIA supergravity, JHEP06 (2015) 195 [arXiv:1502.06620] [INSPIRE]. · Zbl 1388.83723
[78] C. Bachas, E. D’Hoker, J. Estes and D. Krym, M-theory solutions invariant under D(2, 1; γ) ⊕ D(2, 1; γ), Fortsch. Phys.62 (2014) 207 [arXiv:1312.5477]. · Zbl 1338.81310
[79] M.J. Duff, H. Lü and C.N. Pope, AdS3 × S3(un)twisted and squashed and an O(2, 2, Z) multiplet of dyonic strings, Nucl. Phys.B 544 (1999) 145 [hep-th/9807173] [INSPIRE]. · Zbl 0958.81115
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.