Entanglement scrambling in 2d conformal field theory. (English) Zbl 1388.83165

Summary: We investigate how entanglement spreads in time-dependent states of a 1+1 dimensional conformal field theory (CFT). The results depend qualitatively on the value of the central charge. In rational CFTs, which have central charge below a critical value, entanglement entropy behaves as if correlations were carried by free quasiparticles. This leads to long-term memory effects, such as spikes in the mutual information of widely separated regions at late times. When the central charge is above the critical value, the quasiparticle picture fails. Assuming no extended symmetry algebra, any theory with \(c > 1\) has diminished memory effects compared to the rational models. In holographic CFTs, with \(c\gg 1\), these memory effects are eliminated altogether at strong coupling, but reappear after the scrambling time \(t\beta\log c\) at weak coupling.


83C47 Methods of quantum field theory in general relativity and gravitational theory
Full Text: DOI arXiv


[1] M. Cheneau et al., Light-cone-like spreading of correlations in a quantum many-body system, Nature481 (2012) 484177 [arXiv:1111.0776].
[2] T. Langen, R. Geiger and J. Schmiedmayer, Ultracold atoms out of equilibrium, Ann. Rev. Condensed Matter Phys.6 (2015) 201 [arXiv:1408.6377] [INSPIRE].
[3] J. Eisert and T.J. Osborne, General Entanglement Scaling Laws from Time Evolution, Phys. Rev. Lett.97 (2006) 150404 [quant-ph/0603114]. · Zbl 1228.82063
[4] J. H. Bardarson, F. Pollmann and J. E. Moore, Unbounded growth of entanglement in models of many-body localization, Phys. Rev. Lett.109 (2012) 017202 [arXiv:1202.5532].
[5] Y. Sekino and L. Susskind, Fast Scramblers, JHEP10 (2008) 065 [arXiv:0808.2096] [INSPIRE].
[6] M. Rigol and M. Srednicki, Alternatives to Eigenstate Thermalization, Phys. Rev. Lett.108 (2012) 110601 [arXiv:1108.0928].
[7] J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, arXiv:1503.01409 [INSPIRE]. · Zbl 1390.81388
[8] J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic Evolution of Entanglement Entropy, JHEP11 (2010) 149 [arXiv:1006.4090] [INSPIRE]. · Zbl 1294.81128
[9] T. Albash and C.V. Johnson, Evolution of Holographic Entanglement Entropy after Thermal and Electromagnetic Quenches, New J. Phys.13 (2011) 045017 [arXiv:1008.3027] [INSPIRE]. · Zbl 1448.83015
[10] V. Balasubramanian et al., Thermalization of Strongly Coupled Field Theories, Phys. Rev. Lett.106 (2011) 191601 [arXiv:1012.4753] [INSPIRE].
[11] H. Liu and S.J. Suh, Entanglement Tsunami: Universal Scaling in Holographic Thermalization, Phys. Rev. Lett.112 (2014) 011601 [arXiv:1305.7244] [INSPIRE].
[12] S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP03 (2014) 067 [arXiv:1306.0622] [INSPIRE]. · Zbl 1333.83111
[13] V.E. Hubeny and H. Maxfield, Holographic probes of collapsing black holes, JHEP03 (2014) 097 [arXiv:1312.6887] [INSPIRE].
[14] T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP05 (2013) 014 [arXiv:1303.1080] [INSPIRE]. · Zbl 1342.83170
[15] P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech.0504 (2005) P04010 [cond-mat/0503393] [INSPIRE]. · Zbl 1456.82578
[16] P. Calabrese and J. Cardy, Quantum Quenches in Extended Systems, J. Stat. Mech.0706 (2007) P06008 [arXiv:0704.1880] [INSPIRE]. · Zbl 1456.81358
[17] P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys.A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE]. · Zbl 1179.81026
[18] M.M. Wolf, F. Verstraete, M.B. Hastings and J.I. Cirac, Area laws in quantum systems: Mutual information and correlations, Phys. Rev. Lett.100 (2008) 070502 [arXiv:0704.3906]. · Zbl 1228.81112
[19] C.T. Asplund and A. Bernamonti, Mutual information after a local quench in conformal field theory, Phys. Rev.D 89 (2014) 066015 [arXiv:1311.4173] [INSPIRE].
[20] V. Balasubramanian, A. Bernamonti, N. Copland, B. Craps and F. Galli, Thermalization of mutual and tripartite information in strongly coupled two dimensional conformal field theories, Phys. Rev.D 84 (2011) 105017 [arXiv:1110.0488] [INSPIRE].
[21] A. Allais and E. Tonni, Holographic evolution of the mutual information, JHEP01 (2012) 102 [arXiv:1110.1607] [INSPIRE]. · Zbl 1306.81144
[22] S. Leichenauer and M. Moosa, Entanglement Tsunami in (1 + 1)-Dimensions, arXiv:1505.04225 [INSPIRE]. · Zbl 1390.83120
[23] A. Coser, E. Tonni and P. Calabrese, Entanglement negativity after a global quantum quench, J. Stat. Mech.1412 (2014) P12017 [arXiv:1410.0900] [INSPIRE]. · Zbl 1456.81055
[24] P. Calabrese and J.L. Cardy, Time-dependence of correlation functions following a quantum quench, Phys. Rev. Lett.96 (2006) 136801 [cond-mat/0601225] [INSPIRE].
[25] C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys.B 424 (1994) 443 [hep-th/9403108] [INSPIRE]. · Zbl 0990.81564
[26] P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.0406 (2004) P06002 [hep-th/0405152] [INSPIRE]. · Zbl 1082.82002
[27] J.L. Cardy, Conformal Invariance and Surface Critical Behavior, Nucl. Phys.B 240 (1984) 514 [INSPIRE].
[28] M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev.D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].
[29] O. Lunin and S.D. Mathur, Correlation functions for MN/SNorbifolds, Commun. Math. Phys.219 (2001) 399 [hep-th/0006196] [INSPIRE]. · Zbl 0980.81045
[30] J.L. Cardy, Operator Content of Two-Dimensional Conformally Invariant Theories, Nucl. Phys.B 270 (1986) 186 [INSPIRE]. · Zbl 0689.17016
[31] A.B. Zamolodchikov and A.B. Zamolodchikov, Liouville field theory on a pseudosphere, hep-th/0101152 [INSPIRE]. · Zbl 0925.81301
[32] A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett.96 (2006) 110404 [hep-th/0510092] [INSPIRE].
[33] M. Levin and X.G. Wen, Detecting Topological Order in a Ground State Wave Function, Phys. Rev. Lett.96 (2006) 110405 [cond-mat/0510613].
[34] S. He, T. Numasawa, T. Takayanagi and K. Watanabe, Quantum dimension as entanglement entropy in two dimensional conformal field theories, Phys. Rev.D 90 (2014) 041701 [arXiv:1403.0702] [INSPIRE].
[35] D. Pappadopulo, S. Rychkov, J. Espin and R. Rattazzi, OPE Convergence in Conformal Field Theory, Phys. Rev.D 86 (2012) 105043 [arXiv:1208.6449] [INSPIRE].
[36] A.B. Zamolodchikov, Two-dimensional conformal symmetry and critical four-spin correlation functions in the Ashkin-Teller model, Sov. Phys. JETP63 (1986) 1061.
[37] I. Runkel and G.M.T. Watts, A Nonrational CFT with c = 1 as a limit of minimal models, JHEP09 (2001) 006 [hep-th/0107118] [INSPIRE].
[38] P.H. Ginsparg, Applied conformal field theory, hep-th/9108028 [INSPIRE]. · Zbl 0985.82500
[39] P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Springer, Berlin Germany (1997). · Zbl 0869.53052
[40] R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, C = 1 Conformal Field Theories on Riemann Surfaces, Commun. Math. Phys.115 (1988) 649 [INSPIRE]. · Zbl 0649.32019
[41] M.B. Halpern, E. Kiritsis, N.A. Obers and K. Clubok, Irrational conformal field theory, Phys. Rept.265 (1996) 1 [hep-th/9501144] [INSPIRE]. · Zbl 0947.81554
[42] P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory, J. Stat. Mech.0911 (2009) P11001 [arXiv:0905.2069] [INSPIRE]. · Zbl 1456.81360
[43] P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory II, J. Stat. Mech.1101 (2011) P01021 [arXiv:1011.5482] [INSPIRE]. · Zbl 1456.81361
[44] P. Calabrese, J. Cardy and E. Tonni, Entanglement negativity in extended systems: A field theoretical approach, J. Stat. Mech.1302 (2013) P02008 [arXiv:1210.5359] [INSPIRE]. · Zbl 1456.81362
[45] P. Hayden, M. Headrick and A. Maloney, Holographic Mutual Information is Monogamous, Phys. Rev.D 87 (2013) 046003 [arXiv:1107.2940] [INSPIRE].
[46] A.C. Wall, Maximin Surfaces and the Strong Subadditivity of the Covariant Holographic Entanglement Entropy, Class. Quant. Grav.31 (2014) 225007 [arXiv:1211.3494] [INSPIRE]. · Zbl 1304.81139
[47] P. Caputa, M. Nozaki and T. Takayanagi, Entanglement of local operators in large-N conformal field theories, PTEP2014 (2014) 093B06 [arXiv:1405.5946] [INSPIRE]. · Zbl 1331.81062
[48] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE]. · Zbl 1228.83110
[49] V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP07 (2007) 062 [arXiv:0705.0016] [INSPIRE].
[50] J.M. Maldacena and A. Strominger, AdS3black holes and a stringy exclusion principle, JHEP12 (1998) 005 [hep-th/9804085] [INSPIRE]. · Zbl 0951.83019
[51] A. Maloney and E. Witten, Quantum Gravity Partition Functions in Three Dimensions, JHEP02 (2010) 029 [arXiv:0712.0155] [INSPIRE]. · Zbl 1270.83022
[52] I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP10 (2009) 079 [arXiv:0907.0151] [INSPIRE].
[53] T. Hartman, C.A. Keller and B. Stoica, Universal Spectrum of 2d Conformal Field Theory in the Large c Limit, JHEP09 (2014) 118 [arXiv:1405.5137] [INSPIRE]. · Zbl 1333.81368
[54] T. Hartman, Entanglement Entropy at Large Central Charge, arXiv:1303.6955 [INSPIRE].
[55] J.R. David, G. Mandal and S.R. Wadia, Microscopic formulation of black holes in string theory, Phys. Rept.369 (2002) 549 [hep-th/0203048] [INSPIRE]. · Zbl 0998.83032
[56] S.G. Avery, Using the D1D5 CFT to Understand Black Holes, Ph.D. Thesis, Ohio State University, Columbus U.S.A. (2010) [arXiv:1012.0072] [INSPIRE].
[57] R. Dijkgraaf, G.W. Moore, E.P. Verlinde and H.L. Verlinde, Elliptic genera of symmetric products and second quantized strings, Commun. Math. Phys.185 (1997) 197 [hep-th/9608096] [INSPIRE]. · Zbl 0872.32006
[58] M.R. Gaberdiel and R. Gopakumar, Higher Spins and Strings, JHEP11 (2014) 044 [arXiv:1406.6103] [INSPIRE]. · Zbl 1333.81331
[59] M.R. Gaberdiel and R. Gopakumar, Stringy Symmetries and the Higher Spin Square, J. Phys.A 48 (2015) 185402 [arXiv:1501.07236] [INSPIRE]. · Zbl 1314.81144
[60] M.R. Gaberdiel, C. Peng and I.G. Zadeh, Higgsing the stringy higher spin symmetry, arXiv:1506.02045 [INSPIRE]. · Zbl 1388.81814
[61] S.G. Avery, B.D. Chowdhury and S.D. Mathur, Deforming the D1D5 CFT away from the orbifold point, JHEP06 (2010) 031 [arXiv:1002.3132] [INSPIRE]. · Zbl 1290.81097
[62] C.T. Asplund and S.G. Avery, Evolution of Entanglement Entropy in the D1 − D5 Brane System, Phys. Rev.D 84 (2011) 124053 [arXiv:1108.2510] [INSPIRE].
[63] B.A. Burrington, A.W. Peet and I.G. Zadeh, Operator mixing for string states in the D1 − D5 CFT near the orbifold point, Phys. Rev.D 87 (2013) 106001 [arXiv:1211.6699] [INSPIRE].
[64] B.A. Burrington, A.W. Peet and I.G. Zadeh, Twist-nontwist correlators in MN/SNorbifold CFTs, Phys. Rev.D 87 (2013) 106008 [arXiv:1211.6689] [INSPIRE].
[65] Z. Carson, S. Hampton, S.D. Mathur and D. Turton, Effect of the deformation operator in the D1D5 CFT, JHEP01 (2015) 071 [arXiv:1410.4543] [INSPIRE].
[66] P. Calabrese and J. Cardy, Entanglement and correlation functions following a local quench: a conformal field theory approach, J. Stat. Mech. (2007) P10004 [arXiv:0708.3750].
[67] M. Nozaki, T. Numasawa and T. Takayanagi, Holographic Local Quenches and Entanglement Density, JHEP05 (2013) 080 [arXiv:1302.5703] [INSPIRE]. · Zbl 1342.83111
[68] C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Holographic Entanglement Entropy from 2d CFT: Heavy States and Local Quenches, JHEP02 (2015) 171 [arXiv:1410.1392] [INSPIRE]. · Zbl 1388.83084
[69] P. Caputa, J. Simón, A. Štikonas, T. Takayanagi and K. Watanabe, Scrambling time from local perturbations of the eternal BTZ black hole, JHEP08 (2015) 011 [arXiv:1503.08161] [INSPIRE]. · Zbl 1388.83403
[70] A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro Conformal Blocks and Thermality from Classical Background Fields, arXiv:1501.05315 [INSPIRE]. · Zbl 1388.83239
[71] M. Nozaki, T. Numasawa and T. Takayanagi, Quantum Entanglement of Local Operators in Conformal Field Theories, Phys. Rev. Lett.112 (2014) 111602 [arXiv:1401.0539] [INSPIRE].
[72] M. Nozaki, Notes on Quantum Entanglement of Local Operators, JHEP10 (2014) 147 [arXiv:1405.5875] [INSPIRE]. · Zbl 1333.81293
[73] P. Caputa, J. Simón, A. Štikonas and T. Takayanagi, Quantum Entanglement of Localized Excited States at Finite Temperature, JHEP01 (2015) 102 [arXiv:1410.2287] [INSPIRE].
[74] V. Eisler and Z. Zimborás, Entanglement negativity in the harmonic chain out of equilibrium, New J. Phys.16 (2014) 123020 [arXiv:1406.5474].
[75] M. Hoogeveen and B. Doyon, Entanglement negativity and entropy in non-equilibrium conformal field theory, Nucl. Phys.B 898 (2015) 78 [arXiv:1412.7568] [INSPIRE]. · Zbl 1329.81427
[76] X. Wen, P.-Y. Chang and S. Ryu, Entanglement negativity after a local quantum quench in conformal field theories, Phys. Rev.B 92 (2015) 075109 [arXiv:1501.00568] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.