×

Quantum black hole formation in the BFSS matrix model. (English) Zbl 1388.83369

Summary: We study the various head-on collisions of two bunches of D0-branes and their real-time evolution in the BFSS matrix model in classical limit. For a various matrix size \(N\) respecting the ’t Hooft scaling, we find quantitative evidence for the formation of a single bound state of D0-branes at late time, which is matrix model thermalization and dual to the formation of a larger black hole.

MSC:

83C57 Black holes
83C47 Methods of quantum field theory in general relativity and gravitational theory
83E30 String and superstring theories in gravitational theory
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE]. · Zbl 0969.81047
[2] T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: A Conjecture, Phys. Rev.D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].
[3] N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large-N limit of theories with sixteen supercharges, Phys. Rev.D 58 (1998) 046004 [hep-th/9802042] [INSPIRE].
[4] J. Polchinski, M theory and the light cone, Prog. Theor. Phys. Suppl.134 (1999) 158 [hep-th/9903165] [INSPIRE].
[5] G. Festuccia and H. Liu, The Arrow of time, black holes and quantum mixing of large-N Yang-Mills theories, JHEP12 (2007) 027 [hep-th/0611098] [INSPIRE]. · Zbl 1246.83200
[6] D.N. Kabat, G. Lifschytz and D.A. Lowe, Black hole entropy from nonperturbative gauge theory, Phys. Rev.D 64 (2001) 124015 [hep-th/0105171] [INSPIRE].
[7] D.N. Kabat, G. Lifschytz and D.A. Lowe, Black hole thermodynamics from calculations in strongly coupled gauge theory, Int. J. Mod. Phys.A 16 (2001) 856 [hep-th/0007051] [INSPIRE]. · Zbl 0982.83028
[8] D.N. Kabat and G. Lifschytz, Approximations for strongly coupled supersymmetric quantum mechanics, Nucl. Phys.B 571 (2000) 419 [hep-th/9910001] [INSPIRE]. · Zbl 1028.81507
[9] K.N. Anagnostopoulos, M. Hanada, J. Nishimura and S. Takeuchi, Monte Carlo studies of supersymmetric matrix quantum mechanics with sixteen supercharges at finite temperature, Phys. Rev. Lett.100 (2008) 021601 [arXiv:0707.4454] [INSPIRE].
[10] S. Catterall and T. Wiseman, Black hole thermodynamics from simulations of lattice Yang-Mills theory, Phys. Rev.D 78 (2008) 041502 [arXiv:0803.4273] [INSPIRE].
[11] S. Catterall and T. Wiseman, Extracting black hole physics from the lattice, JHEP04 (2010) 077 [arXiv:0909.4947] [INSPIRE]. · Zbl 1272.83046
[12] M. Hanada, Y. Hyakutake, J. Nishimura and S. Takeuchi, Higher derivative corrections to black hole thermodynamics from supersymmetric matrix quantum mechanics, Phys. Rev. Lett.102 (2009) 191602 [arXiv:0811.3102] [INSPIRE].
[13] M. Hanada, Y. Hyakutake, G. Ishiki and J. Nishimura, Holographic description of quantum black hole on a computer, Science344 (2014) 882 [arXiv:1311.5607] [INSPIRE].
[14] N. Iizuka, D.N. Kabat, G. Lifschytz and D.A. Lowe, Probing black holes in nonperturbative gauge theory, Phys. Rev.D 65 (2002) 024012 [hep-th/0108006] [INSPIRE].
[15] N. Iizuka and J. Polchinski, A Matrix Model for Black Hole Thermalization, JHEP10 (2008) 028 [arXiv:0801.3657] [INSPIRE]. · Zbl 1245.83034
[16] D. Berenstein and E. Dzienkowski, Numerical Evidence for Firewalls, arXiv:1311.1168 [INSPIRE]. · Zbl 1470.83054
[17] D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N = 4 super Yang-Mills, JHEP04 (2002) 013 [hep-th/0202021] [INSPIRE].
[18] D. Berenstein and D. Trancanelli, Dynamical tachyons on fuzzy spheres, Phys. Rev.D 83 (2011) 106001 [arXiv:1011.2749] [INSPIRE].
[19] C. Asplund, D. Berenstein and D. Trancanelli, Evidence for fast thermalization in the plane-wave matrix model, Phys. Rev. Lett.107 (2011) 171602 [arXiv:1104.5469] [INSPIRE].
[20] C.T. Asplund, D. Berenstein and E. Dzienkowski, Large-N classical dynamics of holographic matrix models, Phys. Rev.D 87 (2013) 084044 [arXiv:1211.3425] [INSPIRE].
[21] N. Iizuka, D. Kabat, S. Roy and D. Sarkar, Black Hole Formation at the Correspondence Point, Phys. Rev.D 87 (2013) 126010 [arXiv:1303.7278] [INSPIRE].
[22] N. Iizuka, D. Kabat, S. Roy and D. Sarkar, Black Hole Formation in Fuzzy Sphere Collapse, Phys. Rev.D 88 (2013) 044019 [arXiv:1306.3256] [INSPIRE].
[23] E. Witten, Bound states of strings and p-branes, Nucl. Phys.B 460 (1996) 335 [hep-th/9510135] [INSPIRE]. · Zbl 1003.81527
[24] N. Iizuka, T. Okuda and J. Polchinski, Matrix Models for the Black Hole Information Paradox, JHEP02 (2010) 073 [arXiv:0808.0530] [INSPIRE]. · Zbl 1270.81177
[25] G.K. Savvidy, Classical and Quantum Mechanics of Nonabelian Gauge Fields, Nucl. Phys.B 246 (1984) 302 [INSPIRE].
[26] Joint Institute for Computational Fundamental Science, http://www.jicfus.jp.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.