Geometry and supersymmetry of heterotic warped flux AdS backgrounds. (English) Zbl 1388.83734


83E50 Supergravity
Full Text: DOI arXiv


[1] P.G.O. Freund and M.A. Rubin, Dynamics of dimensional reduction, Phys. Lett.B 97 (1980) 233 [INSPIRE].
[2] M.J. Duff, B.E.W. Nilsson and C.N. Pope, Kaluza-Klein supergravity, Phys. Rept.130 (1986) 1 [INSPIRE].
[3] M. Graña, Flux compactifications in string theory: a comprehensive review, Phys. Rept.423 (2006) 91 [hep-th/0509003] [INSPIRE].
[4] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept.323 (2000) 183 [hep-th/9905111] [INSPIRE]. · Zbl 1368.81009
[5] L. Castellani, L.J. Romans and N.P. Warner, A classification of compactifying solutions for D = 11 supergravity, Nucl. Phys.B 241(1984) 429 [INSPIRE].
[6] L.J. Romans, New compactifications of chiral N = 2 D = 10 supergravity, Phys. Lett.B 153 (1985) 392 [INSPIRE].
[7] C.N. Pope and N.P. Warner, Two new classes of compactifications of D = 11 supergravity, Class. Quant. Grav.2 (1985) L1 [INSPIRE]. · Zbl 0575.53059
[8] G.W. Gibbons and P.K. Townsend, Vacuum interpolation in supergravity via super p-branes, Phys. Rev. Lett.71 (1993) 3754 [hep-th/9307049] [INSPIRE]. · Zbl 0972.83598
[9] I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys.B 536 (1998) 199 [hep-th/9807080] [INSPIRE]. · Zbl 0948.81619
[10] B.S. Acharya, J.M. Figueroa-O’Farrill, C.M. Hull and B.J. Spence, Branes at conical singularities and holography, Adv. Theor. Math. Phys.2 (1999) 1249 [hep-th/9808014] [INSPIRE].
[11] M. Cvetič, H. Lü, C.N. Pope and J.F. Vazquez-Poritz, AdS in warped space-times, Phys. Rev.D 62 (2000) 122003 [hep-th/0005246] [INSPIRE].
[12] J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS5solutions of M-theory, Class. Quant. Grav.21 (2004) 4335 [hep-th/0402153] [INSPIRE]. · Zbl 1059.83038
[13] D. Lüst and D. Tsimpis, Supersymmetric AdS4compactifications of IIA supergravity, JHEP02 (2005) 027 [hep-th/0412250] [INSPIRE].
[14] D. Lüst and D. Tsimpis, New supersymmetric AdS4type-II vacua, JHEP09 (2009) 098 [arXiv:0906.2561] [INSPIRE].
[15] J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS5solutions of type IIB supergravity, Class. Quant. Grav.23 (2006) 4693 [hep-th/0510125] [INSPIRE]. · Zbl 1096.83069
[16] N. Kim and J.-D. Park, Comments on AdS2solutions of D = 11 supergravity, JHEP09 (2006) 041 [hep-th/0607093] [INSPIRE].
[17] J.P. Gauntlett, N. Kim and D. Waldram, Supersymmetric AdS3, AdS2and bubble solutions, JHEP04 (2007) 005 [hep-th/0612253] [INSPIRE].
[18] M. Gabella, D. Martelli, A. Passias and J. Sparks, \[N=2 \mathcal{N}=2\] supersymmetric AdS4solutions of M-theory, Commun. Math. Phys.325 (2014) 487 [arXiv:1207.3082] [INSPIRE]. · Zbl 1282.83010
[19] F. Apruzzi, M. Fazzi, A. Passias, D. Rosa and A. Tomasiello, AdS6solutions of type-II supergravity, JHEP11 (2014) 099 [Erratum ibid.05 (2015) 012] [arXiv:1406.0852] [INSPIRE].
[20] F. Apruzzi, M. Fazzi, D. Rosa and A. Tomasiello, All AdS7solutions of type-II supergravity, JHEP04 (2014) 064 [arXiv:1309.2949] [INSPIRE].
[21] N.T. Macpherson, C. Núñez, L.A. Pando Zayas, V.G.J. Rodgers and C.A. Whiting, Type IIB supergravity solutions with AdS5from Abelian and non-Abelian T dualities, JHEP02 (2015) 040 [arXiv:1410.2650] [INSPIRE]. · Zbl 1387.83113
[22] J.B. Gutowski and G. Papadopoulos, Supersymmetry of AdS and flat backgrounds in M-theory, JHEP02 (2015) 145 [arXiv:1407.5652] [INSPIRE]. · Zbl 1388.83816
[23] S.W. Beck, J.B. Gutowski and G. Papadopoulos, Supersymmetry of AdS and flat IIB backgrounds, JHEP02 (2015) 020 [arXiv:1410.3431] [INSPIRE]. · Zbl 1388.83733
[24] S. Beck, J.B. Gutowski and G. Papadopoulos, Supersymmetry of IIA warped flux AdS and flat backgrounds, arXiv:1501.07620 [INSPIRE]. · Zbl 1388.83735
[25] U. Gran, P. Lohrmann and G. Papadopoulos, The spinorial geometry of supersymmetric heterotic string backgrounds, JHEP02 (2006) 063 [hep-th/0510176] [INSPIRE].
[26] U. Gran, G. Papadopoulos, D. Roest and P. Sloane, Geometry of all supersymmetric type-I backgrounds, JHEP08 (2007) 074 [hep-th/0703143] [INSPIRE]. · Zbl 1326.81151
[27] G. Papadopoulos, Heterotic supersymmetric backgrounds with compact holonomy revisited, Class. Quant. Grav.27 (2010) 125008 [arXiv:0909.2870] [INSPIRE]. · Zbl 1190.83097
[28] H. Kunitomo and M. Ohta, Supersymmetric AdS3solutions in heterotic supergravity, Prog. Theor. Phys.122 (2009) 631 [arXiv:0902.0655] [INSPIRE]. · Zbl 1180.83091
[29] J. Gutowski and G. Papadopoulos, Heterotic black horizons, JHEP07 (2010) 011 [arXiv:0912.3472] [INSPIRE]. · Zbl 1290.81121
[30] J. Gutowski and G. Papadopoulos, Heterotic horizons, Monge-Ampere equation and del Pezzo surfaces, JHEP10 (2010) 084 [arXiv:1003.2864] [INSPIRE]. · Zbl 1291.81316
[31] S.R. Green, E.J. Martinec, C. Quigley and S. Sethi, Constraints on string cosmology, Class. Quant. Grav.29 (2012) 075006 [arXiv:1110.0545] [INSPIRE]. · Zbl 1241.83081
[32] F.F. Gautason, D. Junghans and M. Zagermann, On cosmological constants from α′-corrections, JHEP06 (2012) 029 [arXiv:1204.0807] [INSPIRE].
[33] M.B. Green, J.H. Schwarz and E. Witten, Superstring theory, Cambridge University Press, U.K. (1987).
[34] A. Opfermann and G. Papadopoulos, Homogeneous HKT and QKT manifolds, math-ph/9807026 [INSPIRE]. · Zbl 0941.53031
[35] P.S. Howe and G. Papadopoulos, Twistor spaces for HKT manifolds, Phys. Lett.B 379 (1996) 80 [hep-th/9602108] [INSPIRE]. · Zbl 1376.53093
[36] K. Becker, M. Becker, J.-X. Fu, L.-S. Tseng and S.-T. Yau, Anomaly cancellation and smooth non-Kähler solutions in heterotic string theory, Nucl. Phys.B 751 (2006) 108 [hep-th/0604137] [INSPIRE]. · Zbl 1192.81312
[37] J.-X. Fu and S.-T. Yau, The theory of superstring with flux on non-Kähler manifolds and the complex Monge-Ampere equation, J. Diff. Geom.78 (2009) 369 [hep-th/0604063] [INSPIRE].
[38] M. Fernandez, S. Ivanov, L. Ugarte and R. Villacampa, Non-Kähler heterotic string compactifications with non-zero fluxes and constant dilaton, Commun. Math. Phys.288 (2009) 677 [arXiv:0804.1648] [INSPIRE]. · Zbl 1197.83103
[39] A. Strominger and E. Witten, New manifolds for superstring compactification, Commun. Math. Phys.101 (1985) 341 [INSPIRE].
[40] C.M. Hull, Compactifications of the heterotic superstring, Phys. Lett.B 178 (1986) 357 [INSPIRE].
[41] S. Ivanov and G. Papadopoulos, A no-go theorem for string warped compactifications, Phys. Lett.B 497 (2001) 309 [hep-th/0008232] [INSPIRE]. · Zbl 0971.83512
[42] S. Ivanov and G. Papadopoulos, Vanishing theorems and string backgrounds, Class. Quant. Grav.18 (2001) 1089 [math/0010038] [INSPIRE]. · Zbl 0990.53078
[43] P.S. Howe and G. Papadopoulos, Finiteness and anomalies in (4, 0) supersymmetric σ-models, Nucl. Phys.B 381 (1992) 360 [hep-th/9203070] [INSPIRE].
[44] J. Gillard, G. Papadopoulos and D. Tsimpis, Anomaly, fluxes and (2,0) heterotic string compactifications, JHEP06 (2003) 035 [hep-th/0304126] [INSPIRE].
[45] H. Lü, C.N. Pope, K.S. Stelle and P.K. Townsend, Supersymmetric deformations of G2manifolds from higher order corrections to string and M-theory, JHEP10 (2004) 019 [hep-th/0312002] [INSPIRE].
[46] K. Becker, D. Robbins and E. Witten, The α′ expansion on a compact manifold of exceptional holonomy, JHEP06 (2014) 051 [arXiv:1404.2460] [INSPIRE].
[47] A. Strominger, AdS2quantum gravity and string theory, JHEP01 (1999) 007 [hep-th/9809027] [INSPIRE]. · Zbl 0965.81097
[48] U. Gran, J. Gutowski and G. Papadopoulos, Index theory and dynamical symmetry enhancement near IIB horizons, JHEP11 (2013) 104 [arXiv:1306.5765] [INSPIRE]. · Zbl 1342.83477
[49] U. Gran, J. Gutowski and G. Papadopoulos, AdS backgrounds from black hole horizons, Class. Quant. Grav.30 (2013) 055014 [arXiv:1110.0479] [INSPIRE]. · Zbl 1263.83092
[50] T. Friedrich and S. Ivanov, Killing spinor equations in dimension 7 and geometry of integrable G2manifolds, J. Geom. Phys.48 (2003) 1 [math/0112201] [INSPIRE]. · Zbl 1029.81037
[51] G. Papadopoulos, New half supersymmetric solutions of the heterotic string, Class. Quant. Grav.26 (2009) 135001 [arXiv:0809.1156] [INSPIRE]. · Zbl 1171.83370
[52] C.M. Hull and P.K. Townsend, The two loop β-function for σ models with torsion, Phys. Lett.B 191 (1987) 115 [INSPIRE].
[53] E.A. Bergshoeff and M. de Roo, The quartic effective action of the heterotic string and supersymmetry, Nucl. Phys.B 328 (1989) 439 [INSPIRE].
[54] P.S. Howe and G. Papadopoulos, Anomalies in two-dimensional supersymmetric nonlinear σ models, Class. Quant. Grav.4 (1987) 1749 [INSPIRE]. · Zbl 0649.53048
[55] D. Martelli and J. Sparks, Non-Kähler heterotic rotations, Adv. Theor. Math. Phys.15 (2011) 131 [arXiv:1010.4031] [INSPIRE]. · Zbl 1250.83060
[56] P.S. Howe and G. Papadopoulos, Ultraviolet behavior of two-dimensional supersymmetric nonlinear σ models, Nucl. Phys.B 289 (1987) 264 [INSPIRE].
[57] A.A. Tseytlin, σ model Weyl invariance conditions and string equations of motion, Nucl. Phys.B 294 (1987) 383 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.