×

The moduli of smooth hypersurfaces with level structure. (English) Zbl 1390.14042

The authors extend some of their earlier results [Math. Ann. 368, No. 3–4, 1191–1225 (2017; Zbl 1427.11062)] to positive characteristic and at the same time refine them so as to work over \(\mathrm{Spec }{\mathbb Z}[1/N]\) rather than after some base change.
Suppose \(X\) is a smooth hypersurface of degree \(d\) in \({\mathbb P}^{n+1}\) over a field \(k\) in which the prime \(\ell\) is invertible. A tame automorphism is a non-trivial \(\sigma\in\mathrm{Aut }(X)\) whose order is prime to \(\mathrm{char }k\) if the characteristic is positive. A preliminary result here is that such a \(\sigma\) acts non-trivially on \(H^n_{\mathrm{\'et}}(X_{\bar k},{\mathbb Q}_\ell)\), apart from a few very obvious exceptions in low degree. The point is that every such automorphism extends from a linear map and in that case one can use the Lefschetz trace formula to compute the effect on cohomology.
The control over stabilisers that this result gives, combined with standard facts about quotient stacks, allows the authors to define an algebraic stack over \({\mathbb Z}[1/N]\) parametrising hypersurfaces with level-\(N\) structure, and to show that this stack is in fact an affine scheme over \({\mathbb Z}[1/N]\).
An application of this is a proof of a Torelli theorem for cubic threefolds in arbitrary characteristic different from 2, again extending their earlier results.

MSC:

14D23 Stacks and moduli problems
14K30 Picard schemes, higher Jacobians
14J50 Automorphisms of surfaces and higher-dimensional varieties
14C34 Torelli problem

Citations:

Zbl 1427.11062
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abramovich, D., Olsson, M., Vistoli, A.: Tame stacks in positive characteristic. Ann. Inst. Fourier (Grenoble) 58(4), 1057-1091 (2008) · Zbl 1222.14004 · doi:10.5802/aif.2378
[2] Achter, J.: Arithmetic Torelli maps for cubic surfaces and threefolds. Trans. Am. Math. Soc. 366(11), 5749-5769 (2014) · Zbl 1325.14053 · doi:10.1090/S0002-9947-2014-05978-3
[3] Beauville, A.: Les singularités du diviseur \[\Theta\] Θ de la jacobienne intermédiaire de l’hypersurface cubique dans \[{ P}^4\] P4. In: Conte A (ed.) Algebraic Threefolds (Varenna. 1981), Volume 947 of Lecture Notes in Mathematics, pp. 190-208. Springer, New York (1982) · Zbl 0492.14033
[4] Beauville, A.: Some remarks on Kähler manifolds with \[c_1=0\] c1=0. In: Ueno K (ed.) Classification of Algebraic and Analytic Manifolds (Katata. 1982), Volume 39 of Progress in Mathematics, pp. 1-26. Birkhäuser Boston, Boston (1983) · Zbl 1375.14049
[5] Behrend, K., Noohi, B.: Uniformization of Deligne-Mumford curves. J. Reine Angew. Math. 599, 111-153 (2006) · Zbl 1124.14004
[6] Benoist, O.: Espace de modules d’intersections complètes lisses Ph.D. thesis · Zbl 0884.52008
[7] Benoist, O.: Séparation et propriété de Deligne-Mumford des champs de modules d’intersections complètes lisses. J. Lond. Math. Soc. (2) 87(1), 138-156 (2013) · Zbl 1375.14049 · doi:10.1112/jlms/jds045
[8] Bergh, D.: Motivic classes of some classifying stacks. J. Lond. Math. Soc. (2) 93(1), 219-243 (2016) · Zbl 1375.14020 · doi:10.1112/jlms/jdv059
[9] Boissière, S., Nieper-Wißkirchen, M., Sarti, A.: Higher dimensional Enriques varieties and automorphisms of generalized Kummer varieties. J. Math. Pures Appl. (9) 95(5), 553-563 (2011) · Zbl 1215.14046 · doi:10.1016/j.matpur.2010.12.003
[10] Bombieri, E., Swinnerton-Dyer, H.P.F.: On the local zeta function of a cubic threefold. Ann. Scuola Norm. Sup. Pisa (3) 21, 1-29 (1967) · Zbl 0153.50501
[11] Cai, J.-X., Liu, W., Zhang, L.: Automorphisms of surfaces of general type with \[q\ge 2\] q≥2 acting trivially in cohomology. Compos. Math. 149(10), 1667-1684 (2013) · Zbl 1287.14022 · doi:10.1112/S0010437X13007264
[12] Chen, X., Pan, X., Zhang, D.: Automorphism and cohomology II: complete intersections. arXiv:1511.07906 · Zbl 1267.14053
[13] Chênevert, G.: Representations on the cohomology of smooth projective hypersurfaces with symmetries. Proc. Am. Math. Soc. 141(4), 1185-1197 (2013) · Zbl 1267.14053 · doi:10.1090/S0002-9939-2012-11431-5
[14] Clemens, C.H., Griffiths, P.A.: The intermediate Jacobian of the cubic threefold. Ann. Math. (2) 95, 281-356 (1972) · Zbl 0214.48302 · doi:10.2307/1970801
[15] Conrad, B.: Arithmetic moduli of generalized elliptic curves. J. Inst. Math. Jussieu 6(2), 209-278 (2007) · Zbl 1140.14018 · doi:10.1017/S1474748006000089
[16] Conrad, B., Gabber, O., Prasad, G.: Pseudo-Reductive Groups, Volume 17 of New Mathematical Monographs. Cambridge University Press, Cambridge (2010) · Zbl 1216.20038 · doi:10.1017/CBO9780511661143
[17] Deligne, P.: Les intersections complètes de niveau de Hodge un. Invent. Math. 15, 237-250 (1972) · Zbl 0219.14008 · doi:10.1007/BF01404128
[18] Grothendieck, A.: Cohomologie \[l\] l-Adique et Fonctions \[L\] L (SGA 5). Lecture Notes in Mathematics, vol. 589. Springer, New York (1977). (Séminaire de Géometrie Algébrique du Bois-Marie 1965-1966)
[19] Javanpeykar, A., Loughran, D.: Complete intersections: moduli, torelli, and good reduction. Math. Ann. arXiv:1505.02249 (to appear) · Zbl 1427.11062
[20] Katz, N.M., Mazur, B.: Arithmetic Moduli of Elliptic Curves, Volume 108 of Annals of Mathematics Studies. Princeton University Press, Princeton (1985) · Zbl 0576.14026 · doi:10.1515/9781400881710
[21] Keel, S., Mori, S.: Quotients by groupoids. Ann. Math. (2) 145(1), 193-213 (1997) · Zbl 0881.14018 · doi:10.2307/2951828
[22] Laumon, G., Moret-Bailly, L.: Champs Algébriques. Volume 39 of Ergebnisse der Mathematik und Ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer, Berlin (2000) · Zbl 0945.14005
[23] Moret-Bailly, L.: Pinceaux de variétés abéliennes. Astérisque 129, 1-266 (1985) · Zbl 0595.14032
[24] Mukai, S., Namikawa, Y.: Automorphisms of Enriques surfaces which act trivially on the cohomology groups. Invent. Math. 77(3), 383-397 (1984) · Zbl 0559.14038 · doi:10.1007/BF01388829
[25] Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory, volume 34 of Ergebnisse der Mathematik und Ihrer Grenzgebiete (2), 3rd edn. Springer, Berlin (1994) · Zbl 0797.14004
[26] Noohi, B.: Fundamental groups of algebraic stacks. J. Inst. Math. Jussieu 3(1), 69-103 (2004) · Zbl 1052.14001 · doi:10.1017/S1474748004000039
[27] Pan, X.: Automorphism and cohomology I: fano variety of lines and cubic arXiv:1511.05272 · Zbl 1461.14056
[28] Peters, C.A.M.: Holomorphic automorphisms of compact Kähler surfaces and their induced actions in cohomology. Invent. Math. 52(2), 143-148 (1979) · Zbl 0415.32011 · doi:10.1007/BF01403061
[29] Popp, H.: On moduli of algebraic varieties. I. Invent. Math. 22, 1-40, (1973/74) · Zbl 0281.14011
[30] Rizov, J.: Moduli stacks of polarized \[K3\] K3 surfaces in mixed characteristic. Serdica Math. J. 32(2-3), 131-178 (2006) · Zbl 1155.14306
[31] Serre, J.-P.: Rigidité du foncteur de Jacobi d’échelon \[n\ge 3\] n≥3. Appendix of Exp. 17 of Séminaire Cartan (1960) · Zbl 1052.14001
[32] Seshadri, C.S.: Geometric reductivity over arbitrary base. Adv. Math. 26(3), 225-274 (1977) · Zbl 0371.14009 · doi:10.1016/0001-8708(77)90041-X
[33] Silverberg, A., Zarhin, Yu. G: Variations on a theme of Minkowski and Serre. J. Pure Appl. Algebra 111(1-3), 285-302 (1996) · Zbl 0885.14006
[34] The Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu (2015) · Zbl 0415.32011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.