×

Time-varying nonlinear dynamics of a deploying piezoelectric laminated composite plate under aerodynamic force. (English) Zbl 1390.74128

Summary: Using Reddy’s high-order shear theory for laminated plates and Hamilton’s principle, a nonlinear partial differential equation for the dynamics of a deploying cantilevered piezoelectric laminated composite plate, under the combined action of aerodynamic load and piezoelectric excitation, is introduced. Two-degree of freedom (DOF) nonlinear dynamic models for the time-varying coefficients describing the transverse vibration of the deploying laminate under the combined actions of a first-order aerodynamic force and piezoelectric excitation were obtained by selecting a suitable time-dependent modal function satisfying the displacement boundary conditions and applying second-order discretization using the Galerkin method. Using a numerical method, the time history curves of the deploying laminate were obtained, and its nonlinear dynamic characteristics, including extension speed and different piezoelectric excitations, were studied. The results suggest that the piezoelectric excitation has a clear effect on the change of the nonlinear dynamic characteristics of such piezoelectric laminated composite plates. The nonlinear vibration of the deploying cantilevered laminate can be effectively suppressed by choosing a suitable voltage and polarity.

MSC:

74K20 Plates
74F15 Electromagnetic effects in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lee, BHK; Price, SJ; Wong, YS, Nonlinear aeroelastic analysis of airfoil: bifurcation and chaos, Prog. Aerospace Sci., 35, 205-334, (1999) · doi:10.1016/S0376-0421(98)00015-3
[2] Arrison, M., Birocco, K., Gaylord, C., et al.: 2002-2003 AE/ME morphing wing design. Virginia Tech Aerospace Engineering Senior Design Project Spring Semester Final Report. (2003) · Zbl 1422.74039
[3] Tabarrok, B; Leech, CM; Kim, YI, On the dynamics of an axially moving beam, J. Frankl. Inst., 297, 201-220, (1974) · Zbl 0306.73044 · doi:10.1016/0016-0032(74)90104-5
[4] Taleb, IA; Misra, AK, Dynamics of an axially moving beam submerged in a fluid, J. Hydronaut., 15, 62-66, (1981) · doi:10.2514/3.63213
[5] Wang, PKC; Wei, JD, Vibration in a moving flexible robot arm, J. Sound Vib., 116, 149-160, (1987) · doi:10.1016/S0022-460X(87)81326-3
[6] Behdinan, K; Stylianou, M; Tabarrok, B, Dynamics of flexible sliding beams non-linear analysis. part I: formulation, J. Sound Vib., 208, 517-539, (1997) · doi:10.1006/jsvi.1997.1167
[7] Deng, ZC; Zheng, HJ; Zhao, YL; etal., On computation of dynamic properties for deploying cantilever beam based on precision integration method, J. Astronaut., 22, 110-113, (2001)
[8] Zhu, WD; Zheng, NA, Exact response of a translating string with arbitrarily varying length under general excitation, J. Appl. Mech., 75, 519-525, (2008)
[9] Gosselin, F; Paidoussis, MP; Misra, AK, Stability of a deploying/deploying beam in dense fluid, J. Sound Vib., 299, 124-142, (2007) · doi:10.1016/j.jsv.2006.06.050
[10] Wang, L; Ni, Q, Vibration and stability of an axially moving beam immersed in fluid, Int. J. Solids Struct., 45, 1445-1457, (2008) · Zbl 1169.74427 · doi:10.1016/j.ijsolstr.2007.10.015
[11] Zhang, W; Sun, L; Yang, XD; etal., Nonlinear dynamic behaviors of a deploying-and-retreating wing with varying velocity, J. Sound Vib., 332, 6785-6797, (2013) · doi:10.1016/j.jsv.2013.08.006
[12] Huang, R; Qiu, ZP, Transient aeroelastic responses and flutter analysis of a variable-span wing during the morphing process, Chin. J. Aeronaut., 26, 1430-1438, (2013) · doi:10.1016/j.cja.2013.07.047
[13] Wang, LH; Hu, ZD; Zhong, Z, Dynamic analysis of an axially translating plate with time-variant length, Acta Mech., 215, 9-23, (2010) · Zbl 1398.74158 · doi:10.1007/s00707-010-0290-0
[14] Zhang, W; Lu, SF; Yang, XD, Analysis on nonlinear dynamics of a deploying cantilever laminated composite plate, Nonlinear Dyn., 76, 69-93, (2014) · Zbl 1319.74011 · doi:10.1007/s11071-013-1111-5
[15] Yang, XD; Zhang, W; Chen, LQ; etal., Dynamical analysis of axially moving plate by finite difference method, Nonlinear Dyn., 67, 997-1006, (2012) · Zbl 1315.74014 · doi:10.1007/s11071-011-0042-2
[16] Ding, H., Chen, L.Q.: Nonlinear dynamics of axially accelerating viscoelatic beams based on differential quadrature. Acta Mechanica Solida Sinica 22, 267-275 (2009)
[17] Matsuzaki, Y; Torii, H; Toyama, M, Vibration of a cantilevered beam during deployment and retrieval: analysis and experiment, Smart Mater. Struct., 4, 334-339, (1995) · doi:10.1088/0964-1726/4/4/014
[18] Liu, KF; Deng, LY, Experimental verification of an algorithm for identification of linear time-varying systems, J. Sound Vib., 279, 1170-1180, (2005) · doi:10.1016/j.jsv.2004.01.040
[19] Liu, KF; Deng, LY, Identification of pseudo-natural frequencies of an axially moving cantilever beam using a subspace-based algorithm, Mech. Syst. Signal Process., 20, 94-113, (2006) · doi:10.1016/j.ymssp.2004.10.003
[20] Fuller, C.R., Elliott, S.J., Nelson, P.A.: Active Control of Vibration. Academic Press, San Diego (1996)
[21] Reddy, JN; Mitchell, JA, On refined nonlinear theories of laminated composite structures with piezoelectric laminae, Sadhana, 20, 721-747, (1995) · Zbl 1048.74511 · doi:10.1007/BF02823215
[22] Rafiee, M; Mohammadi, M; Sobhani Aragh, B; etal., Nonlinear free and forced thermo-electro-aero-elastic vibration and dynamic response of piezoelectric functionally graded laminated composite shells, part I: theory and analytical solutions, Compos. Struct., 103, 179-187, (2013) · doi:10.1016/j.compstruct.2012.12.053
[23] Fu, YM; Wang, XQ; Yang, JH, Nonlinear dynamic response of piezoelastic laminated plates considering damage effects, Compos. Struct., 81, 353-361, (2007) · doi:10.1016/j.compstruct.2006.08.026
[24] Huang, XL; Shen, HS, Nonlinear free and forced vibration of simply supported shear deformable laminated plates with piezoelectric actuators, Int. J. Mech. Sci., 47, 187-208, (2005) · Zbl 1192.74181 · doi:10.1016/j.ijmecsci.2005.01.003
[25] Dash, P; Singh, BN, Nonlinear free vibration of piezoelectric laminated composite plate, Finite Elem. Anal. Des., 45, 686-694, (2009) · doi:10.1016/j.finel.2009.05.004
[26] Wang, Y; Hao, YX; Wang, JH, Nonlinear vibration of a cantilever FGM rectangular plate with piezoelectric layers based on third- order plate theory, Adv. Mater. Res., 415-417, 2151-2155, (2012) · doi:10.4028/www.scientific.net/AMR.550-553.2151
[27] Zhang, W; Yao, ZG; Yao, MH, Periodic and chaotic dynamics of laminated composite plated piezoelectric rectangular plate with one-to-two internal resonance, Sci. China Ser. E Technol. Sci., 52, 731-742, (2009) · Zbl 1422.74039 · doi:10.1007/s11431-009-0051-2
[28] Zhang, HY; Shen, YP, Vibration suppression of laminated plates with 1-3 piezoelectric fiber-reinforced composite layers equipped with interdigitated electrodes, Compos. Struct., 79, 220-228, (2007) · doi:10.1016/j.compstruct.2005.12.003
[29] Wang, SY; Quek, ST; Ang, KK, Vibration control of smart piezoelectric composite plates, Smart Mater. Struct., 10, 637-644, (2001) · doi:10.1088/0964-1726/10/4/306
[30] Ray, MC; Reddy, JN, Active control of laminated cylindrical shells using piezoelectric fiber reinforced composites, Compos. Sci. Technol., 65, 1226-1236, (2005) · doi:10.1016/j.compscitech.2004.12.027
[31] Qiu, ZC; Zhang, XM; Wu, HX; etal., Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate, J. Sound Vib., 301, 521-543, (2007) · Zbl 1242.74060 · doi:10.1016/j.jsv.2006.10.018
[32] Dong, XJ; Meng, G; Peng, JC, Vibration control of piezoelectric smart structures based on system identification technique: numerical simulation and experimental study, J. Sound Vib., 297, 680-693, (2006) · Zbl 1243.93073 · doi:10.1016/j.jsv.2006.04.021
[33] Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press LLC, Boca Raton (2004) · Zbl 1075.74001
[34] Ashley, H; Zartarian, G, Piston theory-a new aerodynamic tool for the Aeroelastician, J. Aeronaut. Sci., 23, 1109-1118, (1956) · doi:10.2514/8.3740
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.