Engelsöy, Julius; Mertens, Thomas G.; Verlinde, Herman An investigation of \(\mathrm{AdS}_{2}\) backreaction and holography. (English) Zbl 1390.83104 J. High Energy Phys. 2016, No. 7, Paper No. 139, 30 p. (2016). Summary: We investigate a dilaton gravity model in \(\mathrm{AdS}_{2}\) proposed by A. Almheiri and J. Polchinski [ibid. 2015, No. 11, Paper No. 14, 19 p. (2015; Zbl 1388.83079)] and develop a 1d effective description in terms of a dynamical boundary time with a Schwarzian derivative action. We show that the effective model is equivalent to a 1d version of Liouville theory, and investigate its dynamics and symmetries via a standard canonical framework. We include the coupling to arbitrary conformal matter and analyze the effective action in the presence of possible sources. We compute commutators of local operators at large time separation, and match the result with the time shift due to a gravitational shockwave interaction. We study a black hole evaporation process and comment on the role of entropy in this model. Cited in 1 ReviewCited in 233 Documents MSC: 83C47 Methods of quantum field theory in general relativity and gravitational theory 83C45 Quantization of the gravitational field Keywords:2D gravity; AdS-CFT correspondence; black holes; models of quantum gravity Citations:Zbl 1388.83079 PDF BibTeX XML Cite \textit{J. Engelsöy} et al., J. High Energy Phys. 2016, No. 7, Paper No. 139, 30 p. (2016; Zbl 1390.83104) Full Text: DOI arXiv References: [1] Almheiri, A.; Polchinski, J., models of AdS_{2}backreaction and holography, JHEP, 11, 014, (2015) · Zbl 1388.83079 [2] Maldacena, JM; Michelson, J.; Strominger, A., Anti-de Sitter fragmentation, JHEP, 02, 011, (1999) · Zbl 0956.83052 [3] Strominger, A., AdS_{2}quantum gravity and string theory, JHEP, 01, 007, (1999) · Zbl 0965.81097 [4] Balasubramanian, V.; Boer, J.; Sheikh-Jabbari, MM; Simon, J., what is a chiral 2d CFT? and what does it have to do with extremal black holes?, JHEP, 02, 017, (2010) · Zbl 1270.81149 [5] Jackiw, R., Lower dimensional gravity, Nucl. Phys., B 252, 343, (1985) [6] Teitelboim, C., Gravitation and Hamiltonian structure in two space-time dimensions, Phys. Lett., B 126, 41, (1983) [7] Callan, CG; Giddings, SB; Harvey, JA; Strominger, A., Evanescent black holes, Phys. Rev., D 45, r1005, (1992) [8] Giddings, SB; Nelson, WM, Quantum emission from two-dimensional black holes, Phys. Rev., D 46, 2486, (1992) [9] Spradlin, M.; Strominger, A., vacuum states for AdS_{2}black holes, JHEP, 11, 021, (1999) · Zbl 0955.83016 [10] A. Fabbri and J. Navarro-Salas, Modeling black hole evaporation, Imperial College Press, London U.K. (2005). · Zbl 1102.83315 [11] Chung, TD; Verlinde, HL, Dynamical moving mirrors and black holes, Nucl. Phys., B 418, 305, (1994) · Zbl 1009.81525 [12] K. Schoutens, H.L. Verlinde and E.P. Verlinde, Black hole evaporation and quantum gravity, in Proceedings of International Conference on Strings 93, Berkeley U.S.A. (1993), and in Workshop on String Theory, Gauge Theory and Quantum Gravity, Trieste Italy (1993) [hep-th/9401081] [INSPIRE]. · Zbl 0842.53067 [13] S. Sachdev and J.-w. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett.70 (1993) 3339 [cond-mat/9212030] [INSPIRE]. [14] A. Kitaev, A simple model of quantum holography — 2015, at KITP Program: Entanglement in Strongly-Correlated Quantum Matter, Santa Barbara U.S.A. (2015), http://online.kitp.ucsb.edu/online/entangled15/. [15] Sachdev, S., Bekenstein-Hawking entropy and strange metals, Phys. Rev., X 5, 041025, (2015) [16] Polchinski, J.; Rosenhaus, V., The spectrum in the sachdev-ye-Kitaev model, JHEP, 04, 001, (2016) · Zbl 1388.81067 [17] Jevicki, A.; Suzuki, K.; Yoon, J., Bi-local holography in the SYK model, JHEP, 07, 007, (2016) · Zbl 1390.83116 [18] J. Maldacena and D. Stanford, Comments on the Sachdev-Ye-Kitaev model, arXiv:1604.07818 [INSPIRE]. [19] Sachdev, S., Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett., 105, 151602, (2010) [20] T. Dray and G. ’t Hooft, The Gravitational Shock Wave of a Massless Particle, Nucl. Phys.B 253 (1985) 173 [INSPIRE]. [21] Shenker, SH; Stanford, D., Black holes and the butterfly effect, JHEP, 03, 067, (2014) · Zbl 1333.83111 [22] Shenker, SH; Stanford, D., Multiple shocks, JHEP, 12, 046, (2014) · Zbl 1390.83222 [23] Jackson, S.; McGough, L.; Verlinde, H., Conformal bootstrap, universality and gravitational scattering, Nucl. Phys., B 901, 382, (2015) · Zbl 1332.81157 [24] G. Turiaci and H. Verlinde, On CFT and Quantum Chaos, arXiv:1603.03020 [INSPIRE]. · Zbl 1390.81191 [25] J. Polchinski, Chaos in the black hole S-matrix, arXiv:1505.08108 [INSPIRE]. · Zbl 1358.83057 [26] J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, arXiv:1503.01409 [INSPIRE]. · Zbl 1390.81388 [27] K. Jensen, Chaos and hydrodynamics near AdS_{2}, arXiv:1605.06098 [INSPIRE]. [28] J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, arXiv:1606.01857 [INSPIRE]. · Zbl 1361.81112 [29] Pimentel, GL; Polyakov, AM; Tarnopolsky, GM, Vacuum decay in CFT and the Riemann-Hilbert problem, Nucl. Phys., B 907, 617, (2016) · Zbl 1336.81079 [30] Ryu, S.; Takayanagi, T., Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett., 96, 181602, (2006) · Zbl 1228.83110 [31] Boer, J.; Heller, MP; Myers, RC; Neiman, Y., Holographic de Sitter geometry from entanglement in conformal field theory, Phys. Rev. Lett., 116, 061602, (2016) [32] C.T. Asplund, N. Callebaut and C. Zukowski, Equivalence of Emergent de Sitter Spaces from Conformal Field Theory, arXiv:1604.02687 [INSPIRE]. · Zbl 1390.83079 [33] Balasubramanian, V.; Kraus, P., A stress tensor for anti-de Sitter gravity, Commun. Math. Phys., 208, 413, (1999) · Zbl 0946.83013 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.