\(\mathrm{AdS}_{2}\) holographic dictionary. (English) Zbl 1390.83186

Summary: We construct the holographic dictionary for both running and constant dilaton solutions of the two dimensional Einstein-Maxwell-Dilaton theory that is obtained by a circle reduction from Einstein-Hilbert gravity with negative cosmological constant in three dimensions. This specific model ensures that the dual theory has a well defined ultraviolet completion in terms of a two dimensional conformal field theory, but our results apply qualitatively to a wider class of two dimensional dilaton gravity theories. For each type of solutions we perform holographic renormalization, compute the exact renormalized one-point functions in the presence of arbitrary sources, and derive the asymptotic symmetries and the corresponding conserved charges. In both cases we find that the scalar operator dual to the dilaton plays a crucial role in the description of the dynamics. Its source gives rise to a matter conformal anomaly for the running dilaton solutions, while its expectation value is the only non trivial observable for constant dilaton solutions. The role of this operator has been largely overlooked in the literature. We further show that the only non trivial conserved charges for running dilaton solutions are the mass and the electric charge, while for constant dilaton solutions only the electric charge is non zero. However, by uplifting the solutions to three dimensions we show that constant dilaton solutions can support non trivial extended symmetry algebras, including the one found by G. Compère et al. [ibid. 2013, No. 5, Paper No. 152, 25 p. (2013; Zbl 1342.83348)], in agreement with the results of A. Castro and W. Song [“Comments on \(\mathrm{AdS}_2\) gravity”, Preprint, arXiv:1411.1948]. Finally, we demonstrate that any solution of this specific dilaton gravity model can be uplifted to a family of asymptotically \(\mathrm{AdS}_{2}\times S^{2}\) or conformally \(\mathrm{AdS}_{2}\times S^{2}\) solutions of the STU model in four dimensions, including non extremal black holes. The four dimensional solutions obtained by uplifting the running dilaton solutions coincide with the so called ‘subtracted geometries’, while those obtained from the uplift of the constant dilaton ones are new.


83C57 Black holes
83C22 Einstein-Maxwell equations
83C80 Analogues of general relativity in lower dimensions


Zbl 1342.83348
Full Text: DOI arXiv


[1] Compère, G.; Song, W.; Strominger, A., new boundary conditions for AdS_{3}, JHEP, 05, 152, (2013) · Zbl 1342.83348
[2] A. Castro and W. Song, Comments on AdS_{2}gravity, arXiv:1411.1948 [INSPIRE].
[3] Hartman, T.; Strominger, A., central charge for AdS_{2}quantum gravity, JHEP, 04, 026, (2009)
[4] Strominger, A., AdS_{2}quantum gravity and string theory, JHEP, 01, 007, (1999) · Zbl 0965.81097
[5] Chamblin, A.; Emparan, R.; Johnson, CV; Myers, RC, Charged AdS black holes and catastrophic holography, Phys. Rev., D 60, 064018, (1999)
[6] Maldacena, JM; Michelson, J.; Strominger, A., Anti-de Sitter fragmentation, JHEP, 02, 011, (1999) · Zbl 0956.83052
[7] Cadoni, M.; Mignemi, S., asymptotic symmetries of AdS_{2}and conformal group in D = 1, Nucl. Phys., B 557, 165, (1999) · Zbl 0951.83026
[8] Spradlin, M.; Strominger, A., vacuum states for AdS_{2}black holes, JHEP, 11, 021, (1999) · Zbl 0955.83016
[9] Navarro-Salas, J.; Navarro, P., AdS_{2}/CFT_{1}correspondence and near extremal black hole entropy, Nucl. Phys., B 579, 250, (2000) · Zbl 0992.83070
[10] Cadoni, M.; Mignemi, S., symmetry breaking, central charges and the AdS_{2}/CFT_{1}correspondence, Phys. Lett., B 490, 131, (2000)
[11] Caldarelli, M.; Catelani, G.; Vanzo, L., action, Hamiltonian and CFT for 2D black holes, JHEP, 10, 005, (2000) · Zbl 0959.83025
[12] Cadoni, M.; Carta, P.; Klemm, D.; Mignemi, S., AdS_{2}gravity as conformally invariant mechanical system, Phys. Rev., D 63, 125021, (2001)
[13] Alishahiha, M.; Ardalan, F., central charge for 2D gravity on AdS_{2}and AdS_{2}/CFT_{1}correspondence, JHEP, 08, 079, (2008)
[14] Castro, A.; Grumiller, D.; Larsen, F.; McNees, R., holographic description of AdS_{2}black holes, JHEP, 11, 052, (2008)
[15] Alishahiha, M.; Fareghbal, R.; Mosaffa, AE, 2D gravity on AdS_{2}with Chern-Simons corrections, JHEP, 01, 069, (2009) · Zbl 1243.83044
[16] Grumiller, D.; Leston, M.; Vassilevich, D., Anti-de Sitter holography for gravity and higher spin theories in two dimensions, Phys. Rev., D 89, 044001, (2014)
[17] Almheiri, A.; Polchinski, J., models of AdS_{2}backreaction and holography, JHEP, 11, 014, (2015) · Zbl 1388.83079
[18] Grumiller, D.; Salzer, J.; Vassilevich, D., AdS_{2}holography is (non-)trivial for (non-)constant Dilaton, JHEP, 12, 015, (2015) · Zbl 1388.83554
[19] Jensen, K., chaos in AdS_{2}holography, Phys. Rev. Lett., 117, 111601, (2016)
[20] J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, arXiv:1606.01857 [INSPIRE]. · Zbl 1361.81112
[21] Engelsöy, J.; Mertens, TG; Verlinde, H., an investigation of AdS_{2}backreaction and holography, JHEP, 07, 139, (2016) · Zbl 1390.83104
[22] Sen, A., entropy function and AdS_{2}/CFT_{1}correspondence, JHEP, 11, 075, (2008)
[23] Gupta, RK; Sen, A., AdS_{3}/CFT_{2}to AdS_{2}/CFT_{1}, JHEP, 04, 034, (2009)
[24] Sen, A., quantum entropy function from AdS_{2}/CFT_{1}correspondence, Int. J. Mod. Phys., A 24, 4225, (2009) · Zbl 1175.83045
[25] Sachdev, S., Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett., 105, 151602, (2010)
[26] Maldacena, J.; Stanford, D., Remarks on the sachdev-ye-Kitaev model, Phys. Rev., D 94, 106002, (2016)
[27] S. Sachdev and J. Ye, Gapless spin-fluid ground state in a random quantum Heisenberg magnet, Phys. Rev. Lett.70 (1993) 3339 [cond-mat/9212030].
[28] A. Kitaev, A simple model of quantum holography, talks given at KITP, April 7 and May 27, U.S.A. (2015).
[29] Erdmenger, J.; Hoyos, C.; O’Bannon, A.; Wu, J., A holographic model of the Kondo effect, JHEP, 12, 086, (2013)
[30] Almheiri, A.; Kang, B., Conformal symmetry breaking and thermodynamics of near-extremal black holes, JHEP, 10, 052, (2016) · Zbl 1390.83167
[31] R. Jackiw, Liouville field theory: A two-dimensional model for gravity, MIT-CTP-1049 (1982) [INSPIRE].
[32] C. Teitelboim, The Hamiltonian structure of two-dimensional space-time and its relation with the conformal anomaly (1983).
[33] Cvetič, M.; Larsen, F., Conformal symmetry for general black holes, JHEP, 02, 122, (2012) · Zbl 1309.83063
[34] Cvetič, M.; Larsen, F., Conformal symmetry for black holes in four dimensions, JHEP, 09, 076, (2012)
[35] Cvetič, M.; Gibbons, GW, Conformal symmetry of a black hole as a scaling limit: a black hole in an asymptotically conical box, JHEP, 07, 014, (2012)
[36] Virmani, A., Subtracted geometry from Harrison transformations, JHEP, 07, 086, (2012)
[37] Baggio, M.; Boer, J.; Jottar, JI; Mayerson, DR, Conformal symmetry for black holes in four dimensions and irrelevant deformations, JHEP, 04, 084, (2013)
[38] Cvetič, M.; Guica, M.; Saleem, ZH, General black holes, untwisted, JHEP, 09, 017, (2013) · Zbl 1342.83147
[39] Cvetič, M.; Larsen, F., Black holes with intrinsic spin, JHEP, 11, 033, (2014) · Zbl 1333.83068
[40] Cvetič, M.; Youm, D., All the static spherically symmetric black holes of heterotic string on a six torus, Nucl. Phys., B 472, 249, (1996) · Zbl 1003.83514
[41] Cvetič, M.; Youm, D., Entropy of nonextreme charged rotating black holes in string theory, Phys. Rev., D 54, 2612, (1996)
[42] Chong, ZW; Cvetič, M.; Lü, H.; Pope, CN, Charged rotating black holes in four-dimensional gauged and ungauged supergravities, Nucl. Phys., B 717, 246, (2005) · Zbl 1207.83067
[43] Chow, DDK; Compère, G., seed for general rotating non-extremal black holes of\( \mathcal{N} \) = 8 supergravity, Class. Quant. Grav., 31, 022001, (2014) · Zbl 1292.83051
[44] Chow, DDK; Compère, G., black holes in N = 8 supergravity from SO(4\(,\) 4) hidden symmetries, Phys. Rev., D 90, 025029, (2014)
[45] Cvetič, M.; Youm, D., General rotating five-dimensional black holes of toroidally compactified heterotic string, Nucl. Phys., B 476, 118, (1996) · Zbl 0925.83077
[46] M. Cvetič, Z.H. Saleem and A. Satz, Entanglement entropy of subtracted geometry black holes, JHEP09 (2014) 041 [Erratum ibid.09 (2015) 099] [arXiv:1407.0310] [INSPIRE]. · Zbl 1333.83069
[47] Cvetič, M.; Gibbons, GW; Saleem, ZH; Satz, A., Vacuum polarization of STU black holes and their subtracted geometry limit, JHEP, 01, 130, (2015) · Zbl 1388.83419
[48] Cvetič, M.; Saleem, ZH; Satz, A., Analytical result for the vacuum polarization of subtracted rotating black holes, Phys. Rev., D 92, 064030, (2015)
[49] Itzhaki, N.; Maldacena, JM; Sonnenschein, J.; Yankielowicz, S., Supergravity and the large-N limit of theories with sixteen supercharges, Phys. Rev., D 58, 046004, (1998)
[50] Kanitscheider, I.; Skenderis, K.; Taylor, M., Precision holography for non-conformal branes, JHEP, 09, 094, (2008) · Zbl 1245.81187
[51] An, OS; Cvetič, M.; Papadimitriou, I., Black hole thermodynamics from a variational principle: asymptotically conical backgrounds, JHEP, 03, 086, (2016) · Zbl 1388.83365
[52] Bardeen, JM; Horowitz, GT, the extreme Kerr throat geometry: a vacuum analog of AdS_{2} × \(S\)\^{}{2}, Phys. Rev., D 60, 104030, (1999)
[53] J. Erdmenger, C. Hoyos, A. O’Bannon, I. Papadimitriou, J. Probst and J. Wu, Two-point functions in a holographic Kondo model, in preparation. · Zbl 1377.81167
[54] A.D. Polyanin and V.F. Zaitsev, Handbook of exact solutions for ordinary differential equations, CRC Press, U.S.A. (2003). · Zbl 1015.34001
[55] R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev.D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE]. · Zbl 0942.83512
[56] V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev.D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].
[57] Myers, RC, Black hole entropy in two-dimensions, Phys. Rev., D 50, 6412, (1994)
[58] J. Gegenberg, G. Kunstatter and D. Louis-Martinez, Observables for two-dimensional black holes, Phys. Rev.D 51 (1995) 1781 [gr-qc/9408015] [INSPIRE]. · Zbl 0866.58073
[59] Brown, JD; Henneaux, M., Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys., 104, 207, (1986) · Zbl 0584.53039
[60] I. Papadimitriou and K. Skenderis, AdS boundary conditions and black hole thermodynamics: scalars, antisymmetric tensors, and topological charges, in preparation.
[61] Balasubramanian, V.; Boer, J.; Sheikh-Jabbari, MM; Simon, J., what is a chiral 2D CFT? and what does it have to do with extremal black holes?, JHEP, 02, 017, (2010) · Zbl 1270.81149
[62] Haro, S.; Papadimitriou, I.; Petkou, AC, conformally coupled scalars, instantons and vacuum instability in AdS_{4}, Phys. Rev. Lett., 98, 231601, (2007)
[63] Papadimitriou, I., Multi-trace deformations in AdS/CFT: exploring the vacuum structure of the deformed CFT, JHEP, 05, 075, (2007)
[64] Papadimitriou, I., Holographic renormalization of general Dilaton-axion gravity, JHEP, 08, 119, (2011) · Zbl 1298.81194
[65] Henningson, M.; Skenderis, K., The holographic Weyl anomaly, JHEP, 07, 023, (1998) · Zbl 0958.81083
[66] Papadimitriou, I.; Skenderis, K., AdS/CFT correspondence and geometry, IRMA Lect. Math. Theor. Phys., 8, 73, (2005) · Zbl 1081.81085
[67] Osborn, H., Weyl consistency conditions and a local renormalization group equation for general renormalizable field theories, Nucl. Phys., B 363, 486, (1991)
[68] O’Bannon, A.; Papadimitriou, I.; Probst, J., A holographic two-impurity Kondo model, JHEP, 01, 103, (2016) · Zbl 1388.81260
[69] Papadimitriou, I.; Skenderis, K., Thermodynamics of asymptotically locally AdS spacetimes, JHEP, 08, 004, (2005)
[70] Papadimitriou, I., Holographic renormalization as a canonical transformation, JHEP, 11, 014, (2010) · Zbl 1294.81227
[71] Chemissany, W.; Papadimitriou, I., Lifshitz holography: the whole shebang, JHEP, 01, 052, (2015)
[72] Grumiller, D.; McNees, R.; Salzer, J., cosmological constant as confining U(1) charge in two-dimensional Dilaton gravity, Phys. Rev., D 90, 044032, (2014)
[73] Skenderis, K.; Solodukhin, SN, Quantum effective action from the AdS/CFT correspondence, Phys. Lett., B 472, 316, (2000) · Zbl 0959.81102
[74] Troessaert, C., enhanced asymptotic symmetry algebra of AdS_{3}, JHEP, 08, 044, (2013) · Zbl 1342.83112
[75] R. Penrose and W. Rindler, Spinors and spacetime, volume 2, Cambridge Universiyt Press (1986), see chapter 9. · Zbl 0602.53001
[76] Imbimbo, C.; Schwimmer, A.; Theisen, S.; Yankielowicz, S., Diffeomorphisms and holographic anomalies, Class. Quant. Grav., 17, 1129, (2000) · Zbl 0952.81052
[77] Avery, SG; Poojary, RR; Suryanarayana, NV, an\( \text{S}\text{L}\left(2,\mathbb{R}\right) \)current algebra from AdS_{3}gravity, JHEP, 01, 144, (2014) · Zbl 1333.83134
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.