Benini, Francesco; Bobev, Nikolay Two-dimensional SCFTs from wrapped branes and \(c\)-extremization. (English) Zbl 1390.83325 J. High Energy Phys. 2013, No. 6, Paper No. 005, 66 p. (2013). Summary: We apply \(c\)-extremization [the authors, “Exact two-dimensional superconformal \(R\) symmetry and \(c\) extremization”, Phys. Rev. Lett. 110, No. 6, Article ID 061601, 5 p. (2013; doi:10.1103/physrevlett.110.061601)], whose proof we review in full detail, to study two-dimensional \(N = (0, 2)\) superconformal field theories arising from the low-energy dynamics of D3-branes wrapped on Riemann surfaces and M5-branes wrapped on four-manifolds. We compute the exact central charges of these theories using anomalies and \(c\)-extremization. In all cases we also construct AdS3 supergravity solutions of type IIB and eleven-dimensional supergravity, which are holographic duals to the field theories at large \(N\) , and exactly reproduce the central charges computed via \(c\)-extremization. Cited in 2 ReviewsCited in 129 Documents MSC: 83E30 String and superstring theories in gravitational theory 83C57 Black holes 83E50 Supergravity Keywords:supersymmetric gauge theory; field theories in lower dimensions; AdS-CFT correspondence PDF BibTeX XML Cite \textit{F. Benini} and \textit{N. Bobev}, J. High Energy Phys. 2013, No. 6, Paper No. 005, 66 p. (2013; Zbl 1390.83325) Full Text: DOI arXiv References: [1] F. Benini and N. Bobev, Exact two-dimensional superconformal R-symmetry and c-extremization, Phys. Rev. Lett.110 (2013) 061601 [arXiv:1211.4030] [INSPIRE]. [2] P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum Configurations for Superstrings, Nucl. Phys.B 258 (1985) 46 [INSPIRE]. [3] D. Gepner, Space-Time Supersymmetry in Compactified String Theory and Superconformal Models, Nucl. Phys.B 296 (1988) 757 [INSPIRE]. [4] T. Banks, L.J. Dixon, D. Friedan and E.J. Martinec, Phenomenology and Conformal Field Theory Or Can String Theory Predict the Weak Mixing Angle?, Nucl. Phys.B 299 (1988) 613 [INSPIRE]. [5] E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys.B 403 (1993) 159 [hep-th/9301042] [INSPIRE]. · Zbl 0910.14020 [6] T.T. Dumitrescu and N. Seiberg, Supercurrents and Brane Currents in Diverse Dimensions, JHEP07 (2011) 095 [arXiv:1106.0031] [INSPIRE]. · Zbl 1298.81171 [7] A. Adams, D. Tong and B. Wecht., unpublished. [8] K.A. Intriligator and B. Wecht, The Exact superconformal R symmetry maximizes a, Nucl. Phys.B 667 (2003) 183 [hep-th/0304128] [INSPIRE]. · Zbl 1059.81602 [9] D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, JHEP05 (2012) 159 [arXiv:1012.3210] [INSPIRE]. · Zbl 1348.81420 [10] C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Contact Terms, Unitarity and F-Maximization in Three-Dimensional Superconformal Theories, JHEP10 (2012) 053 [arXiv:1205.4142] [INSPIRE]. [11] M. Bershadsky, A. Johansen, V. Sadov and C. Vafa, Topological reduction of 4 − D SYM to 2 − D σ-models, Nucl. Phys.B 448 (1995) 166 [hep-th/9501096] [INSPIRE]. · Zbl 1009.58502 [12] J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys.A 16 (2001) 822 [hep-th/0007018] [INSPIRE]. · Zbl 0984.83052 [13] A. Almuhairi and J. Polchinski, Magnetic AdS × R2: Supersymmetry and stability, arXiv:1108.1213 [INSPIRE]. [14] J.A. Harvey, R. Minasian and G.W. Moore, NonAbelian tensor multiplet anomalies, JHEP09 (1998) 004 [hep-th/9808060] [INSPIRE]. · Zbl 0953.81093 [15] F. Benini, Y. Tachikawa and B. Wecht, Sicilian gauge theories and N = 1 dualities, JHEP01 (2010) 088 [arXiv:0909.1327] [INSPIRE]. · Zbl 1269.81080 [16] L.F. Alday, F. Benini and Y. Tachikawa, Liouville/Toda central charges from M5-branes, Phys. Rev. Lett.105 (2010) 141601 [arXiv:0909.4776] [INSPIRE]. [17] I. Bah, C. Beem, N. Bobev and B. Wecht, AdS/CFT Dual Pairs from M5-Branes on Riemann Surfaces, Phys. Rev.D 85 (2012) 121901 [arXiv:1112.5487] [INSPIRE]. [18] I. Bah, C. Beem, N. Bobev and B. Wecht, Four-Dimensional SCFTs from M5-Branes, JHEP06 (2012) 005 [arXiv:1203.0303] [INSPIRE]. · Zbl 1397.81218 [19] J. Distler and S. Kachru, (0,2) Landau-Ginzburg theory, Nucl. Phys.B 413 (1994) 213 [hep-th/9309110] [INSPIRE]. · Zbl 1007.81505 [20] E. Silverstein and E. Witten, Global U(1) R symmetry and conformal invariance of (0,2) models, Phys. Lett.B 328 (1994) 307 [hep-th/9403054] [INSPIRE]. [21] I.V. Melnikov, (0,2) Landau-Ginzburg Models and Residues, JHEP09 (2009) 118 [arXiv:0902.3908] [INSPIRE]. [22] L. Álvarez-Gaumé and E. Witten, Gravitational Anomalies, Nucl. Phys.B 234 (1984) 269 [INSPIRE]. [23] J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett.B 37 (1971) 95 [INSPIRE]. [24] L. Álvarez-Gaumé and P.H. Ginsparg, The Topological Meaning of Nonabelian Anomalies, Nucl. Phys.B 243 (1984) 449 [INSPIRE]. [25] L. Álvarez-Gaumé and P.H. Ginsparg, The Structure of Gauge and Gravitational Anomalies, Annals Phys.161 (1985) 423 [Erratum ibid.171 (1986) 233] [INSPIRE]. · Zbl 0579.58038 [26] E. Witten, Global Gravitational Anomalies, Commun. Math. Phys.100 (1985) 197. · Zbl 0581.58038 [27] G. ’t Hooft in Recent Developments in Gauge Theories, pg. 135. Plenum, New York (1980), republished in Unity of Forces in the Universe, edited by A. Zee, World Scientific, Singapore (1982), Vol. II, pg. 1004. [28] P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory. Springer-Verlag, New York, (1997). · Zbl 0869.53052 [29] J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge University Press, (1998). · Zbl 1006.81521 [30] P. Spindel, A. Sevrin, W. Troost and A. Van Proeyen, Complex structures on parallelized group manifolds and supersymmetricσ-modelS, Phys. Lett.B 206 (1988) 71 [INSPIRE]. [31] P. Spindel, A. Sevrin, W. Troost and A. Van Proeyen, Extended Supersymmetric σ-models on Group Manifolds. 1. The Complex Structures, Nucl. Phys.B 308 (1988) 662 [INSPIRE]. [32] A. Sevrin, W. Troost, A. Van Proeyen and P. Spindel, Extended supersymmetric σ-modelS on group manifolds. 2. current algebras, Nucl. Phys.B 311 (1988) 465 [INSPIRE]. [33] Y. Kazama and H. Suzuki, New N = 2 Superconformal Field Theories and Superstring Compactification, Nucl. Phys.B 321 (1989) 232 [INSPIRE]. [34] Y. Kazama and H. Suzuki, Characterization of N = 2 Superconformal Models Generated by Coset Space Method, Phys. Lett.B 216 (1989) 112 [INSPIRE]. [35] C. Hull and B.J. Spence, N = 2 current algebra and coset models, Phys. Lett.B 241 (1990) 357 [INSPIRE]. [36] S. Parkhomenko, Extended superconformal current algebras and finite dimensional Manin triples, Sov. Phys. JETP75 (1992) 1 [INSPIRE]. [37] E. Getzler, Manin triples and N = 2 superconformal field theory, hep-th/9307041 [INSPIRE]. · Zbl 0812.58108 [38] D. Friedan, E.J. Martinec and S.H. Shenker, Conformal Invariance, Supersymmetry and String Theory, Nucl. Phys.B 271 (1986) 93 [INSPIRE]. [39] V. Dotsenko and V. Fateev, Conformal Algebra and Multipoint Correlation Functions in Two-Dimensional Statistical Models, Nucl. Phys.B 240 (1984) 312 [INSPIRE]. [40] A. Kapustin, Holomorphic reduction of N = 2 gauge theories, Wilson-’t Hooft operators and S-duality, hep-th/0612119 [INSPIRE]. [41] M. Günaydin, L. Romans and N. Warner, Gauged N = 8 Supergravity in Five-Dimensions, Phys. Lett.B 154 (1985) 268 [INSPIRE]. [42] M. Pernici, K. Pilch and P. van Nieuwenhuizen, Gauged N = 8 D = 5 Supergravity, Nucl. Phys.B 259 (1985) 460 [INSPIRE]. [43] M. Günaydin, L. Romans and N. Warner, Compact and Noncompact Gauged Supergravity Theories in Five-Dimensions, Nucl. Phys.B 272 (1986) 598 [INSPIRE]. [44] S. Cucu, H. Lü and J.F. Vazquez-Poritz, A Supersymmetric and smooth compactification of M-theory to AdS5, Phys. Lett.B 568 (2003) 261 [hep-th/0303211] [INSPIRE]. · Zbl 1038.83037 [45] S. Cucu, H. Lü and J.F. Vazquez-Poritz, Interpolating from AdS(D − 2) × S2to AdS(D), Nucl. Phys.B 677 (2004) 181 [hep-th/0304022] [INSPIRE]. · Zbl 1097.83540 [46] J.P. Gauntlett and O. Varela, D = 5 SU(2) x U(1) Gauged Supergravity from D = 11 Supergravity, JHEP02 (2008) 083 [arXiv:0712.3560] [INSPIRE]. [47] M. Naka, Various wrapped branes from gauged supergravities, hep-th/0206141 [INSPIRE]. [48] J.P. Gauntlett, O.A. Mac Conamhna, T. Mateos and D. Waldram, New supersymmetric AdS3solutions, Phys. Rev.D 74 (2006) 106007 [hep-th/0608055] [INSPIRE]. [49] J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys.104 (1986) 207. · Zbl 0584.53039 [50] M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP07 (1998) 023 [hep-th/9806087] [INSPIRE]. · Zbl 0958.81083 [51] M.T. Anderson, C. Beem, N. Bobev and L. Rastelli, Holographic Uniformization, Commun. Math. Phys.318 (2013) 429 [arXiv:1109.3724] [INSPIRE]. · Zbl 1329.81299 [52] A. Donos, J.P. Gauntlett and C. Pantelidou, Magnetic and Electric AdS Solutions in String- and M-theory, Class. Quant. Grav.29 (2012) 194006 [arXiv:1112.4195] [INSPIRE]. · Zbl 1254.83045 [53] M. Cvetič, M. Duff, P. Hoxha, J.T. Liu, H. Lü et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys.B 558 (1999) 96 [hep-th/9903214] [INSPIRE]. · Zbl 0951.83033 [54] N. Kim, AdS3solutions of IIB supergravity from D3-branes, JHEP01 (2006) 094 [hep-th/0511029] [INSPIRE]. [55] J.P. Gauntlett, N. Kim and D. Waldram, Supersymmetric AdS3, AdS2and Bubble Solutions, JHEP04 (2007) 005 [hep-th/0612253] [INSPIRE]. [56] N. Kim, The Backreacted Káhler Geometry of Wrapped Branes, Phys. Rev.D 86 (2012) 067901 [arXiv:1206.1536] [INSPIRE]. [57] P. Kraus, Lectures on black holes and the AdS3/CF T2correspondence, Lect. Notes Phys.755 (2008) 193 [hep-th/0609074] [INSPIRE]. · Zbl 1155.83303 [58] K. Jensen, Chiral anomalies and AdS/CMT in two dimensions, JHEP01 (2011) 109 [arXiv:1012.4831] [INSPIRE]. · Zbl 1214.81220 [59] S. Gukov, E. Martinec, G.W. Moore and A. Strominger, Chern-Simons gauge theory and the AdS3/CF T2correspondence, hep-th/0403225 [INSPIRE]. [60] E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys.121 (1989) 351. · Zbl 0667.57005 [61] S. Elitzur, G.W. Moore, A. Schwimmer and N. Seiberg, Remarks on the Canonical Quantization of the Chern-Simons-Witten Theory, Nucl. Phys.B 326 (1989) 108 [INSPIRE]. [62] A. D’Adda, A. Davis and P. Di Vecchia, Effective actions in nonabelian theories, Phys. Lett.B 121 (1983) 335 [INSPIRE]. [63] E. Witten, Nonabelian Bosonization in Two-Dimensions, Commun. Math. Phys.92 (1984) 455. · Zbl 0536.58012 [64] F. Larsen, The Perturbation spectrum of black holes in N = 8 supergravity, Nucl. Phys.B 536 (1998) 258 [hep-th/9805208] [INSPIRE]. · Zbl 0940.83031 [65] D. Marolf and S.F. Ross, Boundary Conditions and New Dualities: Vector Fields in AdS/CFT, JHEP11 (2006) 085 [hep-th/0606113] [INSPIRE]. [66] K. Bardakci, E. Rabinovici and B. Saering, String Models with c < 1 Components, Nucl. Phys.B 299 (1988) 151 [INSPIRE]. · Zbl 0661.17018 [67] D.V. Belyaev and P. van Nieuwenhuizen, Rigid supersymmetry with boundaries, JHEP04 (2008) 008 [arXiv:0801.2377] [INSPIRE]. [68] D.S. Berman and D.C. Thompson, Membranes with a boundary, Nucl. Phys.B 820 (2009) 503 [arXiv:0904.0241] [INSPIRE]. · Zbl 1194.81186 [69] E. Ivanov, S. Krivonos and O. Lechtenfeld, Double vector multiplet and partially broken N =4, D = 3 supersymmetry, Phys. Lett.B 487 (2000) 192 [hep-th/0006017] [INSPIRE]. · Zbl 1050.81685 [70] E. Witten, Some comments on string dynamics, hep-th/9507121 [INSPIRE]. · Zbl 1003.81535 [71] E. Witten, Five-brane effective action in M-theory, J. Geom. Phys.22 (1997) 103 [hep-th/9610234] [INSPIRE]. · Zbl 0878.58063 [72] K.A. Intriligator, Anomaly matching and a Hopf-Wess-Zumino term in 6d, N = (2,0) field theories, Nucl. Phys.B 581 (2000) 257 [hep-th/0001205] [INSPIRE]. · Zbl 0984.81145 [73] P. Yi, Anomaly of (2,0) theories, Phys. Rev.D 64 (2001) 106006 [hep-th/0106165] [INSPIRE]. [74] J.P. Gauntlett and N. Kim, M five-branes wrapped on supersymmetric cycles. 2., Phys. Rev.D 65 (2002) 086003 [hep-th/0109039] [INSPIRE]. [75] J.P. Gauntlett, N. Kim and D. Waldram, M Five-branes wrapped on supersymmetric cycles, Phys. Rev.D 63 (2001) 126001 [hep-th/0012195] [INSPIRE]. [76] J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP12 (1997) 002 [hep-th/9711053] [INSPIRE]. [77] R. Minasian, G.W. Moore and D. Tsimpis, Calabi-Yau black holes and (0,4) σ-models, Commun. Math. Phys.209 (2000) 325 [hep-th/9904217] [INSPIRE]. · Zbl 0960.83022 [78] J.T. Liu and R. Minasian, Black holes and membranes in AdS7, Phys. Lett.B 457 (1999) 39 [hep-th/9903269] [INSPIRE]. [79] M. Pernici, K. Pilch and P. van Nieuwenhuizen, Gauged maximally extended supergravity in seven-dimensions, Phys. Lett.B 143 (1984) 103 [INSPIRE]. [80] H. Nastase, D. Vaman and P. van Nieuwenhuizen, Consistent nonlinear K K reduction of 11 − D supergravity on AdS7× S4and selfduality in odd dimensions, Phys. Lett.B 469 (1999) 96 [hep-th/9905075] [INSPIRE]. [81] H. Nastase, D. Vaman and P. van Nieuwenhuizen, Consistency of the AdS7× S4reduction and the origin of selfduality in odd dimensions, Nucl. Phys.B 581 (2000) 179 [hep-th/9911238] [INSPIRE]. · Zbl 0985.83026 [82] J.P. Gauntlett, O.A. Mac Conamhna, T. Mateos and D. Waldram, AdS spacetimes from wrapped M5 branes, JHEP11 (2006) 053 [hep-th/0605146] [INSPIRE]. [83] P. Figueras, O.A. Mac Conamhna and E. O Colgain, Global geometry of the supersymmetric AdS3/CF T2correspondence in M-theory, Phys. Rev.D 76 (2007) 046007 [hep-th/0703275] [INSPIRE]. [84] O.J. Ganor, Compactification of tensionless string theories, hep-th/9607092 [INSPIRE]. [85] F. Benini and S. Cremonesi, Partition functions of N = (2,2) gauge theories on S2and vortices, arXiv:1206.2356 [INSPIRE]. · Zbl 1308.81131 [86] N. Doroud, J. Gomis, B. Le Floch and S. Lee, Exact Results in D = 2 Supersymmetric Gauge Theories, arXiv:1206.2606 [INSPIRE]. · Zbl 1342.81573 [87] D.Z. Freedman, M. Headrick and A. Lawrence, On closed string tachyon dynamics, Phys. Rev.D 73 (2006) 066015 [hep-th/0510126] [INSPIRE]. [88] D. Kutasov, New results on the ’a theorem’ in four-dimensional supersymmetric field theory, hep-th/0312098 [INSPIRE]. [89] Y. Tachikawa, Five-dimensional supergravity dual of a-maximization, Nucl. Phys.B 733 (2006) 188 [hep-th/0507057] [INSPIRE]. · Zbl 1192.83073 [90] P. Szepietowski, Comments on a-maximization from gauged supergravity, JHEP12 (2012) 018 [arXiv:1209.3025] [INSPIRE]. · Zbl 1397.83207 [91] D. Martelli, J. Sparks and S.-T. Yau, The Geometric dual of a-maximisation for Toric Sasaki-Einstein manifolds, Commun. Math. Phys.268 (2006) 39 [hep-th/0503183] [INSPIRE]. · Zbl 1190.53041 [92] D. Martelli, J. Sparks and S.-T. Yau, Sasaki-Einstein manifolds and volume minimisation, Commun. Math. Phys.280 (2008) 611 [hep-th/0603021] [INSPIRE]. · Zbl 1161.53029 [93] J.P. Gauntlett, N. Kim, S. Pakis and D. Waldram, Membranes wrapped on holomorphic curves, Phys. Rev.D 65 (2002) 026003 [hep-th/0105250] [INSPIRE]. [94] F. Benini, Y. Tachikawa and D. Xie, Mirrors of 3d Sicilian theories, JHEP09 (2010) 063 [arXiv:1007.0992] [INSPIRE]. · Zbl 1291.81229 [95] D. Gaiotto, N = 2 dualities, JHEP08 (2012) 034 [arXiv:0904.2715] [INSPIRE]. [96] F. Benini, S. Benvenuti and Y. Tachikawa, Webs of five-branes and N = 2 superconformal field theories, JHEP09 (2009) 052 [arXiv:0906.0359] [INSPIRE]. [97] D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems and the WKB Approximation, arXiv:0907.3987 [INSPIRE]. · Zbl 1358.81150 [98] M. Aganagic, A Stringy Origin of M2 Brane Chern-Simons Theories, Nucl. Phys.B 835 (2010) 1 [arXiv:0905.3415] [INSPIRE]. · Zbl 1204.81131 [99] F. Benini, C. Closset and S. Cremonesi, Chiral flavors and M2-branes at toric CY4 singularities, JHEP02 (2010) 036 [arXiv:0911.4127] [INSPIRE]. · Zbl 1270.81151 [100] F. Benini, C. Closset and S. Cremonesi, Quantum moduli space of Chern-Simons quivers, wrapped D6-branes and AdS4/CFT3, JHEP09 (2011) 005 [arXiv:1105.2299] [INSPIRE]. · Zbl 1301.81164 [101] P.H. Ginsparg, Applications Of Topological And Differential Geometric Methods To Anomalies In Quantum Field Theory, in New Perspectives in Quantum Field Theories: proceedings, World Scientific, Singapore, 1985. [102] C.G. Callan Jr. and J.A. Harvey, Anomalies and Fermion Zero Modes on Strings and Domain Walls, Nucl. Phys.B 250 (1985) 427 [INSPIRE]. [103] M. Sohnius, Introducing Supersymmetry, Phys. Rept.128 (1985) 39 [INSPIRE]. [104] N. Bobev, A. Kundu, K. Pilch and N.P. Warner, Supersymmetric Charged Clouds in AdS5, JHEP03 (2011) 070 [arXiv:1005.3552] [INSPIRE]. · Zbl 1301.81106 [105] K. Behrndt, A.H. Chamseddine and W. Sabra, BPS black holes in N = 2 five-dimensional AdS supergravity, Phys. Lett.B 442 (1998) 97 [hep-th/9807187] [INSPIRE]. · Zbl 1002.83517 [106] M.T. Anderson, A survey of Einstein metrics on 4-manifolds, arXiv:0810.4830. · Zbl 1210.53050 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.