×

Modeling of a non-local stimulus for bone remodeling process under cyclic load: application to a dental implant using a bioresorbable porous material. (English) Zbl 1391.74156

Summary: In this paper, a numerical method based on finite elements is used to study the phenomena of resorption and growth of bone tissue and resorption of the biomaterial in the neighborhood of a dental implant fixture of the type IntraMobil Zylinder. The mechanical stimulus that drives these processes is a linear combination of strain energy and viscous dissipation. To simulate the implant, an axisymmetric model has been used from the point of view of the geometry; the material behavior is described in the poro-visco-elastic frame. The external action is represented by a load variable with sinusoidal law characterized by different frequencies. Investigated aspects are the influence of the load frequency and of the lazy zone on the remodeling process.

MSC:

74L15 Biomechanical solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
92C10 Biomechanics
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] [1] Soncini, M, Pietrabissa, R, Rodriguez y Baena, R. Computational approach for the mechanical reliability of a dental implant. In: Middleton, J, Pande, GN, Jones, ML (eds.) Computer methods in biomechanics and biomedical engineering. Philadelphia, PA: Gordon and Breach Science Publishers, 2001.
[2] [2] Andreaus, U, Colloca, M, Iacoviello, D. Coupling image processing and stress analysis for damage identification in a human premolar tooth. Comput Methods Programs Biomed 2011; 103(2): 61-73.
[3] [3] Ancillao, A, Andreaus, U. Finite element analysis of the stress state produced by an orthodontic skeletal anchorage system based on miniscrews. J Cranio Max Dis 2013; 2(1): 28.
[4] [4] Marangos, O, Misra, A, Spencer, P. Physico-mechanical properties determination using microscale homotopic measurements: application to sound and caries-affected primary tooth dentin. Acta Biomater 2009; 5(4): 1338-1348.
[5] [5] Niznick, GA. Product profile-achieving osseointegration in soft bone: The search for improved results. Oral Health 2000; 90(8): 27-34.
[6] [6] Babbush, CA, Kirsch, A, Mentag, PJ. Intramobile cylinder (IMZ) two-stage osteointegrated implant system with the intramobile element (IME): part I. Its rationale and procedure for use. Int J Oral Maxillofac Implants 1987; 2(4): 203.
[7] [7] Byrne, G. Fundamentals of implant dentistry. Hoboken, NJ: John Wiley & Sons, 2014.
[8] [8] Di Egidio, A, Luongo, A, Paolone, A. Linear and non-linear interactions between static and dynamic bifurcations of damped planar beams. Int J Non Linear Mech 2007; 42(1): 88-98. · Zbl 1200.74090
[9] [9] Luongo, A, Zulli, D, Piccardo, G. On the effect of twist angle on nonlinear galloping of suspended cables. Comput Struct 2009; 87(15): 1003-1014.
[10] [10] Ruta, GC, Varano, V, Pignataro, M. A beam model for the flexural-torsional buckling of thin-walled members with some applications. Thin Wall Struct 2008; 46(7-9): 816-822.
[11] [11] Rizzi, NL, Varano, V. On the postbuckling analysis of thin-walled frames. In: 13th International Conference on Civil, Structural and Environmental Engineering Computing, CC 2011, Chania, Crete, Greece; 6 September-9 September 2011, p. 14. http://www.scopus.com/inward/record.url?eid=2-s2.0-84858408805&partnerID=40&md5=a745dd02f25d4713190331a6ddfbc8cf.
[12] [12] Rizzi, N, Varano, V, Gabriele, S. Initial postbuckling behavior of thin-walled frames under mode interaction. Thin Wall Struct 2013; 68: 124-134.
[13] [13] Pignataro, M, Rizzi, N, Ruta, G, Varano, V. The effects of warping constraints on the buckling of thin-walled structures. J Mech Mater Struct 2010; 4(10): 1711-1727.
[14] [14] Grillo, A, Federico, S, Wittum, G. Evolution of a fibre-reinforced growing mixture. Nuovo Cimento C 2009; 32(1): 97.
[15] [15] Placidi, L, dell’Isola, F, Ianiro, N. Variational formulation of pre-stressed solid-fluid mixture theory, with an application to wave phenomena. Eur J Mech A 2008; 27(4): 582-606. · Zbl 1146.74012
[16] [16] Placidi, L, Hutter, K. Thermodynamics of polycrystalline materials treated by the theory of mixtures with continuous diversity. Continuum Mech Thermodyn 2006; 17(6): 409-451. · Zbl 1113.74011
[17] [17] Goda, I, Assidi, M, Belouettar, S. A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization. J Mech Behav Biomed Mater 2012; 16: 87-108.
[18] [18] Altenbach, H, Eremeyev, V. Analysis of the viscoelastic behavior of plates made of functionally graded materials. Z Angew Math Mech 2008; 88(5): 332-341. · Zbl 1137.74034
[19] [19] Altenbach, H, Eremeyev, VA, Lebedev, LP. Acceleration waves and ellipticity in thermoelastic micropolar media. Arch Appl Mech 2010; 80(3): 217-227. · Zbl 1271.74251
[20] [20] Aminpour, H, Rizzi, N. A one-dimensional continuum with microstructure for single-wall carbon nanotubes bifurcation analysis. Math Mech Solids 2016; 21(2): 168-181. · Zbl 1332.74007
[21] [21] Cowin, SC, Nunziato, JW. Linear elastic materials with voids. J Elast 1983; 13(2): 125-147. · Zbl 0523.73008
[22] [22] Biot, MA. Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 1962; 33(4): 1482-1498. · Zbl 0104.21401
[23] [23] Biot, MA. Generalized theory of acoustic propagation in porous dissipative media. J Acoust Soc Am 1962; 34(9A): 1254-1264.
[24] [24] Cowin, SC. Bone poroelasticity. J Biomech 1999; 32(3): 217-238.
[25] [25] dell’Isola, F, Rosa, L, Woźniak, C. A micro-structured continuum modelling compacting fluid-saturated grounds: The effects of pore-size scale parameter. Acta Mech 1998; 127(1-4): 165-182. · Zbl 0897.73003
[26] [26] dell’Isola, F, Batra, RC. Saint-Venant’s problem for porous linear elastic materials. J Elast 1997; 47(1): 73-81. · Zbl 0891.73011
[27] [27] Madeo, A, dell’Isola, F, Darve, F. A continuum model for deformable, second gradient porous media partially saturated with compressible fluids. J Mech Phys Solids 2013; 61(11): 2196-2211.
[28] [28] Madeo, A, dell’Isola, F, Ianiro, N. A variational deduction of second gradient poroelasticity II: An application to the consolidation problem. J Mech Mater Struct 2008; 3(4): 607-625.
[29] [29] Tomic, A, Grillo, A, Federico, S. Poroelastic materials reinforced by statistically oriented fibres—numerical implementation and application to articular cartilage. IMA J Appl Math 2014; 79(5): 1027-1059. · Zbl 1299.74171
[30] [30] Federico, S, Grillo, A, Herzog, W. Possible approaches in modelling rearrangement in a microstructured material. In: Key engineering materials, vol. 340. Trans Tech Publ, Zurich, Switzerland: Kreuzstrasse, pp.137-142.
[31] [31] Grillo, A, Prohl, R, Wittum, G. A poroplastic model of structural reorganisation in porous media of biomechanical interest. Continuum Mech Thermodyn 2016; 28(1): 579-601. · Zbl 1348.74097
[32] [32] dell’Isola, F, Rosa, L, Woźniak, C. Dynamics of solids with microperiodic nonconnected fluid inclusions. Arch Appl Mech 1997; 67: 215-228. · Zbl 0888.73004
[33] [33] Ganghoffer, JF. A contribution to the mechanics and thermodynamics of surface growth. Application to bone external remodeling. Int J Eng Sci 2012; 50(1): 166-191. · Zbl 1423.74613
[34] [34] Ganghoffer, JF. Mechanical modeling of growth considering domain variation—part II: Volumetric and surface growth involving eshelby tensors. J Mech Phys Solids 2010; 58(9): 1434-1459. · Zbl 1429.74072
[35] [35] Placidi, L, Faria, SH, Hutter, K. On the role of grain growth, recrystallization and polygonization in a continuum theory for anisotropic ice sheets. Ann Glaciol 2004; 39(1): 49-52.
[36] [36] Placidi, L, Hutter, K. An anisotropic flow law for incompressible polycrystalline materials. Z Angew Math Phys 2005; 57(1): 160-181. · Zbl 1091.74010
[37] [37] dell’Isola, F, Hutter, K. What are the dominant thermomechanical processes in the basal sediment layer of large ice sheets? Proc R Soc Lond A 1998; 454(1972): 1169-1195. · Zbl 0913.76092
[38] [38] dell’Isola, F, Romano, A. A phenomenological approach to phase transition in classical field theory. Int J Eng Sci 1987; 25(11): 1469-1475. · Zbl 0629.73006
[39] [39] dell’Isola, F, Woźniak, C. On phase transition layers in certain micro-damaged two-phase solids. Int J Fract 1997; 83(2): 175-189.
[40] [40] Yeremeyev, VA, Freidin, AB, Sharipova, LL. The stability of the equilibrium of two-phase elastic solids. J Appl Math Mech 2007; 71(1): 61-84.
[41] [41] Eremeyev, VA, Pietraszkiewicz, W. Phase transitions in thermoelastic and thermoviscoelastic shells. Arch Mech 2009; 61(1): 41-67. · Zbl 1273.74371
[42] [42] Andreaus, U, Giorgio, I, Madeo, A. Modeling of the interaction between bone tissue and resorbable biomaterial as linear elastic materials with voids. Z Angew Math Phys 2015; 66(1): 209-237. · Zbl 1317.74064
[43] [43] Seppecher, P. Second-gradient theory: application to Cahn-Hilliard fluids. In: Continuum thermomechanics. Berlin, Germany: Springer, 2002, pp.379-388.
[44] [44] Yang, Y, Misra, A. Higher-order stress-strain theory for damage modeling implemented in an element-free galerkin formulation. Comput Model Eng Sci 2010; 64(1): 1-36. · Zbl 1231.74023
[45] [45] Yang, Y, Ching, WY, Misra, A. Higher-order continuum theory applied to fracture simulation of nanoscale intergranular glassy film. J Nanomech Micromech 2011; 1(2): 60-71.
[46] [46] Placidi, L. A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Continuum Mech Thermodyn 2015; 27(4-5): 623-638. · Zbl 1341.74016
[47] [47] Placidi, L. A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model. Continuum Mech Thermodyn 2016; 28: 119-137. · Zbl 1348.74062
[48] [48] Rinaldi, A, Placidi, L. A microscale second gradient approximation of the damage parameter of quasi-brittle heterogeneous lattices. Z Angew Math Mech 2014; 94(10): 862-877. · Zbl 1301.74042
[49] [49] Andreaus, U, Ceradini, G, D’Asdia, P. Damage modelling and seismic response of simple degrading systems. Res Mech 1987; 22(1): 79-100.
[50] [50] Carcaterra, A, dell’Isola, F, Esposito, R. Macroscopic description of microscopically strongly inhomogenous systems: A mathematical basis for the synthesis of higher gradients metamaterials. Arch Ration Mech Anal 2015; 218(3): 1239-1262. · Zbl 1352.37193
[51] [51] Lee, TC, Staines, A, Taylor, D. Bone adaptation to load: microdamage as a stimulus for bone remodelling. J Anat 2002; 201(6): 437-446.
[52] [52] Sedlin, ED. A rheologic model for cortical bone: a study of the physical properties of human femoral samples. Acta Orthop 1965; 36(S83): 1-77.
[53] [53] Bargren, JH, Bassett, CAL, Gjelsvik, A. Mechanical properties of hydrated cortical bone. J Biomech 1974; 7(3): 239-245.
[54] [54] Carcaterra, A, Akay, A. Dissipation in a finite-size bath. Phys Rev E 2011; 84(1): 011121.
[55] [55] Carcaterra, A, Roveri, N, Pepe, G. Fractional dissipation generated by hidden wave-fields. Math Mech Solids 2015; 20(10): 1251-1262. · Zbl 1338.74064
[56] [56] Lekszycki, T. Application of variational methods in analysis and synthesis of viscoelastic continuous systems. J Struct Mech 1991; 19(2): 163-192.
[57] [57] dell’Isola, F, Madeo, A, Seppecher, P. Cauchy tetrahedron argument applied to higher contact interactions. Arch Ration Mech Anal 2016; 219(3): 1305-1341. · Zbl 1395.74071
[58] [58] dell’Isola, F, Seppecher, P, Della Corte, A. The postulations á la D’Alembert and á la Cauchy for higher gradient continuum theories are equivalent: a review of existing results. Proc R Soc Lond A 2015; 471(2183): 20150415. · Zbl 1371.82032
[59] [59] Giorgio, I, Andreaus, U, Scerrato, D. A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials. Biomech Model Mechanobiol. Epub ahead of print on 30 January 2016. DOI: 10.1007/s10237-016-0765-6.
[60] [60] Lekszycki, T, dell’Isola, F. A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. Z Angew Math Mech 2012; 92(6): 426-444. · Zbl 1241.92010
[61] [61] Mullender, MG, Huiskes, R. Proposal for the regulatory mechanism of Wolff’s law. J Orthop Res 1995; 13(4): 503-512.
[62] [62] Madeo, A, Lekszycki, T, dell’Isola, F. A continuum model for the bio-mechanical interactions between living tissue and bio-resorbable graft after bone reconstructive surgery. C R Mec 2011; 339(10): 625-640.
[63] [63] Kumar, C, Jasiuk, I, Dantzig, J. Dissipation energy as a stimulus for cortical bone adaptation. J Mech Mater Struct 2011; 6(1): 303-319.
[64] [64] Turner, CH. Homeostatic control of bone structure: an application of feedback theory. Bone 1991; 12(3): 203-217.
[65] [65] Weinans, H, Huiskes, R, Grootenboer, HJ. The behavior of adaptive bone-remodeling simulation models. J Biomech 1992; 25(12): 1425-1441.
[66] [66] Hambli, R. Connecting mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling. Front Bioeng Biotechnol. Epub ahead of print on 08 April 2014. DOI: 10.3389/fbioe.2014.00006.
[67] [67] Cowin, SC, Hegedus, DH. Bone remodeling I: theory of adaptive elasticity. J Elast 1976; 6(3): 313-326. · Zbl 0335.73028
[68] [68] Carter, DR, Caler, WE. A cumulative damage model for bone fracture. J Orthop Res 1985; 3(1): 84-90.
[69] [69] Caler, WE, Carter, DR. Bone creep-fatigue damage accumulation. J Biomech 1989; 22(6): 625-635.
[70] [70] Lekszycki, T. Modelling of bone adaptation based on an optimal response hypothesis. Meccanica 2002; 37(4-5): 343-354. · Zbl 1141.74345
[71] [71] Jang, IG, Kim, IY. Application of design space optimization to bone remodeling simulation of trabecular architecture in human proximal femur for higher computational efficiency. Finite Elem Anal Des 2010; 46(4): 311-319.
[72] [72] Andreaus, U, Colloca, M, Iacoviello, D. Optimal-tuning pid control of adaptive materials for structural efficiency. Struct Multidiscip Optim 2011; 43(1): 43-59.
[73] [73] Andreaus, U, Colloca, M, Iacoviello, D. An optimal control procedure for bone adaptation under mechanical stimulus. Control Eng Pract 2012; 20(6): 575-583.
[74] [74] Andreaus, U, Colloca, M, Iacoviello, D. Modeling of trabecular architecture as result of an optimal control procedure. In: Iacoviello, D, Andreaus, U (eds.) Biomedical imaging and computational modeling in biomechanics, chapter II. Dordrecht: Springer, 2013, pp.19-37.
[75] [75] Andreaus, U, Colloca, M, Iacoviello, D. Optimal bone density distributions: Numerical analysis of the osteocyte spatial influence in bone remodeling. Comput Methods Programs Biomed 2014; 113(1): 80-91.
[76] [76] Lanyon, LE, Rubin, CT. Static vs dynamic loads as an influence on bone remodelling. J Biomech 1984; 17(12): 897-905.
[77] [77] Turner, CH. Three rules for bone adaptation to mechanical stimuli. Bone 1998; 23(5): 399-407.
[78] [78] Andreaus, U, Giorgio, I, Lekszycki, T. A 2-D continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time. Z Angew Math Mech 2014; 94(12): 978-1000. · Zbl 1303.74029
[79] [79] Giorgio, I, Andreaus, U, Madeo, A. The influence of different loads on the remodeling process of a bone and bioresorbable material mixture with voids. Continuum Mech Thermodyn 2016; 28(1): 21-40. · Zbl 1348.74242
[80] [80] Giorgio, I, Galantucci, L, Della Corte, A. Piezo-electromechanical smart materials with distributed arrays of piezoelectric transducers: current and upcoming applications. Int J Appl Electromagnet Mech 2015; 47(4): 1051-1084.
[81] [81] Giorgio, I, Culla, A, Del Vescovo, D. Multimode vibration control using several piezoelectric transducers shunted with a multiterminal network. Arch Appl Mech 2009; 79(9): 859-879. · Zbl 1176.74128
[82] [82] Porfiri, M, dell’Isola, F, Santini, E. Modeling and design of passive electric networks interconnecting piezoelectric transducers for distributed vibration control. Int J Appl Electromagnet Mech 2005; 21(2): 69-87.
[83] [83] Maurini, C, dell’Isola, F, Del Vescovo, D. Comparison of piezoelectronic networks acting as distributed vibration absorbers. Mech Syst Sig Process 2004; 18(5): 1243-1271.
[84] [84] Pagnini, LC, Piccardo, G. The three-hinged arch as an example of piezomechanic passive controlled structure. Continuum Mech Thermodyn. Epub ahead of print on 27 August 2015. DOI: 10.1007/s00161-015-0474-x. · Zbl 1355.74058
[85] [85] Del Vescovo, D, Giorgio, I. Dynamic problems for metamaterials: review of existing models and ideas for further research. Int J Eng Sci 2014; 80: 153-172. · Zbl 1423.74039
[86] [86] dell’Isola, F, Lekszycki, T, Pawlikowski, M. Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence. Z Angew Math Phys 2015; 66(6): 3473-3498. · Zbl 1395.74002
[87] [87] dell’Isola, F, Della Corte, A, Greco, L. Plane bias extension test for a continuum with two inextensible families of fibers: a variational treatment with Lagrange multipliers and a perturbation solution. Int J Solids Struct 2016; 81: 1-12.
[88] [88] Alibert, JJ, Della Corte, A. Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof. Z Angew Math Phys 2015; 66(5): 2855-2870. · Zbl 1327.74128
[89] [89] Madeo, A, Della Corte, A, Greco, L. Wave propagation in pantographic 2D lattices with internal discontinuities. Proc Est Acad Sci 2015; 64(3S): 325-330. · Zbl 1330.35440
[90] [90] Cazzani, A, Malagù, M, Turco, E. Isogeometric analysis of plane-curved beams. Math Mech Solids. Epub ahead of print on April 20, 2014. DOI: 10.1177/1081286514531265. · Zbl 1370.74084
[91] [91] Turco, E, Aristodemo, M. A three-dimensional b-spline boundary element. Comput Methods Appl Mech Eng 1998; 155(1): 119-128. · Zbl 0960.74074
[92] [92] Cazzani, A, Malagù, M, Turco, E. Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches. Continuum Mech Thermodyn 2016; 28(1): 139-156. · Zbl 1348.74190
[93] [93] Cazzani, A, Malagù, M, Turco, E. Constitutive models for strongly curved beams in the frame of isogeometric analysis. Math Mech Solids 2016; 21(2): 182-209. · Zbl 1333.74051
[94] [94] Della Corte, A, Battista, A, dell’Isola, F. Referential description of the evolution of a 2D swarm of robots interacting with the closer neighbors: Perspectives of continuum modeling via higher gradient continua. Int J Non Linear Mech 2016; 80: 209-220.
[95] [95] Federico, S, Grillo, A, Imatani, S. An energetic approach to the analysis of anisotropic hyperelastic materials. Int J Eng Sci 2008; 46(2): 164-181. · Zbl 1213.74056
[96] [96] Solari, G, Pagnini, LC, Piccardo, G. A numerical algorithm for the aerodynamic identification of structures. J Wind Eng Ind Aerodyn 1997; 69: 719-730.
[97] [97] Greco, L, Cuomo, M. B-Spline interpolation of Kirchhoff-Love space rods. Comput Methods Appl Mech Eng 2013; 256: 251-269. · Zbl 1352.74153
[98] [98] Greco, L, Cuomo, M. An implicit G1 multi patch B-spline interpolation for Kirchhoff-Love space rod. Comput Methods Appl Mech Eng 2014; 269: 173-197. · Zbl 1296.74049
[99] [99] Greco, L, Cuomo, M. An isogeometric implicit G1 mixed finite element for Kirchhoff space rods. Comput Methods Appl Mech Eng 2016; 298: 325-349. · Zbl 1425.74259
[100] [100] Cuomo, M, Contrafatto, L, Greco, L. A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int J Eng Sci 2014; 80: 173-188. · Zbl 1423.74055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.