Vallières, Daniel The equivariant Tamagawa number conjecture and the extended abelian Stark conjecture. (English) Zbl 1396.11125 J. Reine Angew. Math. 734, 1-58 (2018). Author’s abstract: “The goal of this paper is to show that the equivariant Tamagawa number conjecture implies the extended abelian Stark conjecture contained in [S. Erickson, Rocky Mt. J. Math. 39, No. 3, 765–787 (2009; Zbl 1183.11071)] and [C. J. Emmons and C. D. Popescu, J. Number Theory 129, No. 6, 1350–1365 (2009; Zbl 1166.11043)]. In particular, this gives the first proof of the extended abelian Stark conjecture for the base field \(\mathbb{Q}\), since the equivariant Tamagawa number conjecture away from 2 was proved in this context by D. Burns and C. Greither [Invent. Math. 153, No. 2, 303–359 (2003; Zbl 1142.11076)] and M. Flach completed their results at 2 in [Contemp. Math. 358, 79–125 (2004; Zbl 1070.11025)] and [J. Reine Angew. Math. 661, 1–36 (2011; Zbl 1242.11083)].”From the introduction: “The paper is subdivided as follows: In Section 2, we review Tate sequences, and in Secton 3 we state the equivariant Tamagawa number conjecture as formulated by D. Burns and M. Flach [Doc. Math. 6, 501–570 (2001; Zbl 1052.11077)]. Particularly important forms is the reformulation of the equivariant Tamagawa number conjecture contained in Section 3.4 which is due to Burns. In Section 4, we recall the statement of the Emmons-Popescu conjecture and we state a stronger conjecture (Conjecture 4.16) which will be the main object at study of this paper. We also study the connection between this stronger conjecture and a question that was studied in [J. Tate, Progress in Mathematics, Vol. 47. Boston-Basel-Stuttgart: Birkhäuser. (1984; Zbl 0545.12009)] and [the author, J. Number Theory 132, No. 11, 2535–2567 (2012; Zbl 1368.11117)]. In Section 5, we present a useful reduction. We point out here that even if one is only interested in the rank one situation, this reduction forces the consideration of the higher-order of vanishing case as well. We go on in Section 6 with showing that the equivariant Tamagawa number conjecture implies Conjecture 4.16 following the strategy used by D. Burns [Invent. Math. 169, No. 3, 451–499 (2007; Zbl 1133.11063)] in the case of the Rubin-Stark conjecture. This is our main theorem which we state in Section 6.3. We end this paper with Section 7, where we state some explicit consequences of our work when the base field is \(\mathbb{Q}\).” Reviewer: Andrzej Dąbrowski (Szczecin) Cited in 1 ReviewCited in 1 Document MSC: 11R23 Iwasawa theory 11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture Keywords:equivariant Tamagawa number conjecture; abelian Stark conjecture; Tate sequences; Rubin-Stark conjecture Citations:Zbl 1183.11071; Zbl 1166.11043; Zbl 1142.11076; Zbl 1070.11025; Zbl 1242.11083; Zbl 1052.11077; Zbl 0545.12009; Zbl 1368.11117; Zbl 1133.11063 PDF BibTeX XML Cite \textit{D. Vallières}, J. Reine Angew. Math. 734, 1--58 (2018; Zbl 1396.11125) Full Text: DOI References: [1] W. Bley and D. Burns, Equivariant Tamagawa numbers, Fitting ideals and Iwasawa theory, Compos. Math. 126 (2001), no. 2, 213-247.; Bley, W.; Burns, D., Equivariant Tamagawa numbers, Fitting ideals and Iwasawa theory, Compos. Math., 126, 2, 213-247 (2001) · Zbl 0987.11069 [2] W. Bley and D. Burns, Explicit units and the equivariant Tamagawa number conjecture, Amer. J. Math. 123 (2001), no. 5, 931-949.; Bley, W.; Burns, D., Explicit units and the equivariant Tamagawa number conjecture, Amer. J. Math., 123, 5, 931-949 (2001) · Zbl 0984.11055 [3] M. Breuning, Determinant functors on triangulated categories, J. K-Theory 8 (2011), no. 2, 251-291.; Breuning, M., Determinant functors on triangulated categories, J. K-Theory, 8, 2, 251-291 (2011) · Zbl 1243.18023 [4] D. Burns, Equivariant Tamagawa numbers and refined abelian Stark conjectures, J. Math. Sci. Univ. Tokyo 10 (2003), no. 2, 225-259.; Burns, D., Equivariant Tamagawa numbers and refined abelian Stark conjectures, J. Math. Sci. Univ. Tokyo, 10, 2, 225-259 (2003) · Zbl 1037.11072 [5] D. Burns, On the values of equivariant zeta functions of curves over finite fields, Doc. Math. 9 (2004), 357-399 (electronic).; Burns, D., On the values of equivariant zeta functions of curves over finite fields, Doc. Math., 9, 357-399 (2004) · Zbl 1077.11049 [6] D. Burns, Congruences between derivatives of abelian L-functions at \(s=0\), Invent. Math. 169 (2007), no. 3, 451-499.; Burns, D., Congruences between derivatives of abelian L-functions at \(s=0\), Invent. Math., 169, 3, 451-499 (2007) · Zbl 1133.11063 [7] D. Burns and M. Flach, Tamagawa numbers for motives with (non-commutative) coefficients, Doc. Math. 6 (2001), 501-570 (electronic).; Burns, D.; Flach, M., Tamagawa numbers for motives with (non-commutative) coefficients, Doc. Math., 6, 501-570 (2001) · Zbl 1052.11077 [8] D. Burns and C. Greither, On the equivariant Tamagawa number conjecture for Tate motives, Invent. Math. 153 (2003), no. 2, 303-359.; Burns, D.; Greither, C., On the equivariant Tamagawa number conjecture for Tate motives, Invent. Math., 153, 2, 303-359 (2003) · Zbl 1142.11076 [9] D. Burns and A. Hayward, Explicit units and the equivariant Tamagawa number conjecture. II, Comment. Math. Helv. 82 (2007), no. 3, 477-497.; Burns, D.; Hayward, A., Explicit units and the equivariant Tamagawa number conjecture. II, Comment. Math. Helv., 82, 3, 477-497 (2007) · Zbl 1155.11053 [10] C. W. Curtis and I. Reiner, Methods of representation theory. Vol. I, Wiley Class. Libr., John Wiley & Sons, New York 1990.; Curtis, C. W.; Reiner, I., Methods of representation theory. Vol. I (1990) · Zbl 0698.20001 [11] C. J. Emmons and C. D. Popescu, Special values of abelian L-functions at \(s=0\), J. Number Theory 129 (2009), no. 6, 1350-1365.; Emmons, C. J.; Popescu, C. D., Special values of abelian L-functions at \(s=0\), J. Number Theory, 129, 6, 1350-1365 (2009) · Zbl 1166.11043 [12] S. Erickson, An extension of the first-order Stark conjecture, Rocky Mountain J. Math. 39 (2009), no. 3, 765-787.; Erickson, S., An extension of the first-order Stark conjecture, Rocky Mountain J. Math., 39, 3, 765-787 (2009) · Zbl 1183.11071 [13] M. Flach, The equivariant Tamagawa number conjecture: A survey, Stark’s conjectures: Recent work and new directions, Contemp. Math. 358, American Mathematical Society, Providence (2004), 79-125.; Flach, M., The equivariant Tamagawa number conjecture: A survey, Stark’s conjectures: Recent work and new directions, 79-125 (2004) · Zbl 1070.11025 [14] M. Flach, On the cyclotomic main conjecture for the prime 2, J. reine angew. Math. 661 (2011), 1-36.; Flach, M., On the cyclotomic main conjecture for the prime 2, J. reine angew. Math., 661, 1-36 (2011) · Zbl 1242.11083 [15] C. Greither and R. Kučera, Annihilators of minus class groups of imaginary abelian fields, Ann. Inst. Fourier (Grenoble) 57 (2007), no. 5, 1623-1653.; Greither, C.; Kučera, R., Annihilators of minus class groups of imaginary abelian fields, Ann. Inst. Fourier (Grenoble), 57, 5, 1623-1653 (2007) · Zbl 1128.11050 [16] B. H. Gross, On the values of abelian L-functions at \(s=0\), J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35 (1988), no. 1, 177-197.; Gross, B. H., On the values of abelian L-functions at \(s=0\), J. Fac. Sci. Univ. Tokyo Sect. IA Math., 35, 1, 177-197 (1988) · Zbl 0681.12005 [17] P. J. Hilton and U. Stammbach, A course in homological algebra, 2nd ed., Grad. Texts in Math. 4, Springer, New York 1997.; Hilton, P. J.; Stammbach, U., A course in homological algebra (1997) · Zbl 0863.18001 [18] F. F. Knudsen and D. Mumford, The projectivity of the moduli space of stable curves. I: Preliminaries on “det” and “Div”, Math. Scand. 39 (1976), no. 1, 19-55.; Knudsen, F. F.; Mumford, D., The projectivity of the moduli space of stable curves. I: Preliminaries on “det” and “Div”, Math. Scand., 39, 1, 19-55 (1976) · Zbl 0343.14008 [19] S. Mac Lane and G. Birkhoff, Algebra, Macmillan, New York 1967.; Mac Lane, S.; Birkhoff, G., Algebra (1967) [20] C. D. Popescu, Base change for Stark-type conjectures “over \(\Bbb Z\)”, J. reine angew. Math. 542 (2002), 85-111.; Popescu, C. D., Base change for Stark-type conjectures “over \(\Bbb Z\)”, J. reine angew. Math., 542, 85-111 (2002) · Zbl 1074.11062 [21] C. D. Popescu, Rubin’s integral refinement of the abelian Stark conjecture, Stark’s conjectures: Recent work and new directions, Contemp. Math. 358, American Mathematical Society, Providence (2004), 1-35.; Popescu, C. D., Rubin’s integral refinement of the abelian Stark conjecture, Stark’s conjectures: Recent work and new directions, 1-35 (2004) · Zbl 1062.11072 [22] C. D. Popescu, Stark’s question and a refinement of Brumer’s conjecture extrapolated to the function field case, Compos. Math. 140 (2004), no. 3, 631-646.; Popescu, C. D., Stark’s question and a refinement of Brumer’s conjecture extrapolated to the function field case, Compos. Math., 140, 3, 631-646 (2004) · Zbl 1059.11069 [23] C. D. Popescu, Stark’s question on special values of L-functions, Math. Res. Lett. 14 (2007), no. 3, 531-545.; Popescu, C. D., Stark’s question on special values of L-functions, Math. Res. Lett., 14, 3, 531-545 (2007) · Zbl 1175.11068 [24] C. D. Popescu, Integral and p-adic refinements of the abelian Stark conjecture, Arithmetic algebraic geometry (Park City 2009), IAS/Park City Math. Ser. 18, American Mathematical Society, Providence (2011), 45-101.; Popescu, C. D., Integral and p-adic refinements of the abelian Stark conjecture, Arithmetic algebraic geometry, 45-101 (2011) · Zbl 1260.11068 [25] K. Rubin, A Stark conjecture “over \(\Bbb Z\)” for abelian L-functions with multiple zeros, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 1, 33-62.; Rubin, K., A Stark conjecture “over \(\Bbb Z\)” for abelian L-functions with multiple zeros, Ann. Inst. Fourier (Grenoble), 46, 1, 33-62 (1996) · Zbl 0834.11044 [26] H. M. Stark, L-functions at \(s=1\). IV: First derivatives at \(s=0\), Adv. Math. 35 (1980), no. 3, 197-235.; Stark, H. M., L-functions at \(s=1\). IV: First derivatives at \(s=0\), Adv. Math., 35, 3, 197-235 (1980) · Zbl 0475.12018 [27] J. Tate, The cohomology groups of tori in finite Galois extensions of number fields, Nagoya Math. J. 27 (1966), 709-719.; Tate, J., The cohomology groups of tori in finite Galois extensions of number fields, Nagoya Math. J., 27, 709-719 (1966) · Zbl 0146.06501 [28] J. Tate, Les conjectures de Stark sur les fonctions L d’Artin en \(s=0\), Progr. Math. 47, Birkhäuser, Boston 1984.; Tate, J., Les conjectures de Stark sur les fonctions L d’Artin en \(s=0 (1984)\) · Zbl 0545.12009 [29] D. Vallières, On a generalization of the rank one Rubin-Stark conjecture, ProQuest LLC, Ann Arbor 2011, .; Vallières, D., On a generalization of the rank one Rubin-Stark conjecture (2011) · Zbl 1368.11117 [30] D. Vallières, On a generalization of the rank one Rubin-Stark conjecture, J. Number Theory 132 (2012), no. 11, 2535-2567.; Vallières, D., On a generalization of the rank one Rubin-Stark conjecture, J. Number Theory, 132, 11, 2535-2567 (2012) · Zbl 1368.11117 [31] D. Vallières, Theoretical evidence in support of the extended abelian rank one Stark conjecture for the base field \(\mathbb{Q} \), Acta Arith. 156 (2012), no. 4, 383-402.; Vallières, D., Theoretical evidence in support of the extended abelian rank one Stark conjecture for the base field \(\mathbb{Q} \), Acta Arith., 156, 4, 383-402 (2012) · Zbl 1291.11132 [32] N. Yoneda, On the homology theory of modules, J. Fac. Sci. Univ. Tokyo Sect. I 7 (1954), 193-227.; Yoneda, N., On the homology theory of modules, J. Fac. Sci. Univ. Tokyo Sect. I, 7, 193-227 (1954) · Zbl 0058.01902 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.