×

Potential differential games. (English) Zbl 1397.91085

Summary: This paper introduces the notion of a potential differential game (PDG), which roughly put is a noncooperative differential game to which we can associate an optimal control problem (OCP) whose solutions are Nash equilibria for the original game. If this is the case, there are two immediate consequences. Firstly, finding Nash equilibria for the game is greatly simplified, because it is a lot easier to deal with an OCP than with the original game itself. Secondly, the Nash equilibria obtained from the associated OCP are automatically “pure” (or deterministic) rather than “mixed” (or randomized). We restrict ourselves to open-loop differential games. We propose two different approaches to identify a PDG and to construct a corresponding OCP. As an application, we consider a PDG with a certain turnpike property that is obtained from results for the associated OCP. We illustrate our results with a variety of examples.

MSC:

91A23 Differential games (aspects of game theory)
91A10 Noncooperative games
49N70 Differential games and control
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Amir, R; Nannerup, N, Information structure and the tragedy of the commons in resource extraction, J Bioecon, 8, 147-165, (2006) · doi:10.1007/s10818-006-9001-2
[2] Charalambous CD (2016) Decentralized optimality conditions of stochastic differential decision problems via Girsanov’s measure transformation. Math Control Signals Syst 28:19. doi:10.1007/s00498-016-0168-3 · Zbl 1346.93395
[3] Clarke F (2013) Functional analysis, calculus of variations and optimal control. Springer, Berlin · Zbl 1277.49001 · doi:10.1007/978-1-4471-4820-3
[4] Dockner, E; Feischtinger, G; Jørgensen, S, Tractable classes of nonzero-sum open-loop Nash differential games: theory and examples, J Optim Theory Appl, 45, 179-197, (1985) · Zbl 0535.90109 · doi:10.1007/BF00939976
[5] Dockner EJ, Jørgensen S, Long NV, Sorger G (2000) Differential games in economics and management science. Cambridge University Press, Cambridge · Zbl 0996.91001 · doi:10.1017/CBO9780511805127
[6] Dragone, D; Lambertini, L; Leitmann, G; Palestini, A, Hamiltonian potential functions for differential games, IFAC Proc, 42, 1-8, (2009) · Zbl 1329.49069 · doi:10.3182/20090506-3-SF-4003.00002
[7] Dragone, D; Lambertini, L; Palestini, A, Static and dynamic best-response potential functions for the non-linear Cournot game, Optimization, 61, 1283-1293, (2012) · Zbl 1259.91029 · doi:10.1080/02331934.2010.541457
[8] Dragone, D; Lambertini, L; Leitmann, G; Palestini, A, Hamiltonian potential functions for differential games, Automatica, 62, 134-138, (2015) · Zbl 1329.49069 · doi:10.1016/j.automatica.2015.09.036
[9] Fonseca-Morales A, Hernández-Lerma O. A note on differential games with Pareto-optimal Nash equilibria: deterministic and stochastic models. J Dyn Games (to appear)
[10] Friedman A (2013) Differential games. Dover Publications, Inc., Mineola, New York
[11] González-Sánchez D, Hernández-Lerma O (2013) Discrete-time stochastic control and dynamic potential games: the Euler-equation approach. Springer, Berlin · Zbl 1344.93001 · doi:10.1007/978-3-319-01059-5
[12] González-Sánchez, D; Hernández-Lerma, O, An inverse optimal problem in discrete-time stochastic control, J Differ Equ Appl, 19, 39-53, (2013) · Zbl 1260.93175 · doi:10.1080/10236198.2011.613596
[13] González-Sánchez, D; Hernández-Lerma, O, Dynamic potential games: the discrete-time stochastic case, Dyn Games Appl, 4, 309-328, (2014) · Zbl 1302.91019 · doi:10.1007/s13235-014-0105-3
[14] González-Sánchez, D; Hernández-Lerma, O, A survey of static and dynamic potential games, Sci China Math, 59, 2075-2102, (2016) · Zbl 1371.91009 · doi:10.1007/s11425-016-0264-6
[15] Gopalakrishnan, R; Marden, JR; Wierman, A, Potential games are necessary to ensure pure Nash equilibria in cost sharing games, Math Oper Res, 39, 1252-1296, (2014) · Zbl 1310.91013 · doi:10.1287/moor.2014.0651
[16] Jørgensen S, Zaccour G (2012) Differential games in marketing, vol 15. Springer, Berlin
[17] La QD, Chew YH, Soong BH (2016) Potential game theory: applications in radio resource allocation. Springer, Berlin · Zbl 1397.91005
[18] Long, NV, Dynamic games in the economics of natural resources: a survey, Dyn Games Appl, 1, 115-148, (2011) · Zbl 1214.91085 · doi:10.1007/s13235-010-0003-2
[19] Mangasarian OL (1969) Nonlinear programming. McGraw-Hill, New York · Zbl 0194.20201
[20] Monderer, D; Shapley, LS, Potential games, Game Econ Behav, 14, 124-143, (1996) · Zbl 0862.90137 · doi:10.1006/game.1996.0044
[21] Mou, L; Yong, J, A variational formula for stochastic controls and some applications, Pure Appl Math Q, 3, 539-567, (2007) · Zbl 1142.49013 · doi:10.4310/PAMQ.2007.v3.n2.a7
[22] Potters JAM, Raghavan TES, Tijs SH (2009) Pure equilibrium strategies for stochastic games via potential functions. In: Advances in dynamic games and their applications. Birkhauser, Boston, pp 433-444 · Zbl 1179.91028
[23] Rosenthal, RW, A class of games possessing pure-strategy Nash equilibria, Int J Game Theory, 2, 65-67, (1973) · Zbl 0259.90059 · doi:10.1007/BF01737559
[24] Slade, EM, What does an oligopoly maximize?, J Ind Econ, 42, 45-61, (1994) · doi:10.2307/2950588
[25] Sundaram RK (1996) A first course in optimization theory. Cambridge University Press, Cambridge · Zbl 0885.90106 · doi:10.1017/CBO9780511804526
[26] Tauchnitz, N, The Pontryagin maximum principle for nonlinear optimal control problems with infinite horizon, J Optim Theory Appl, 167, 27-48, (2015) · Zbl 1326.49030 · doi:10.1007/s10957-015-0723-y
[27] Trélat, E; Zuazua, E, The turnpike property in finite-dimensional nonlinear optimal control, J Differ Equ, 258, 81-114, (2015) · Zbl 1301.49010 · doi:10.1016/j.jde.2014.09.005
[28] Yong J, Zhou XY (1999) Stochastic controls: Hamiltonian systems and HJB equations, vol 43. Springer, Berlin · Zbl 0943.93002 · doi:10.1007/978-1-4612-1466-3
[29] Zazo S, Zazo J, Sánchez-Fernández M (2014) A control theoretic approach to solve a constrained uplink power dynamic game. In: 22nd European Signal processing conference on IEEE (EUSIPCO), pp 401-405
[30] Zazo S, Valcarcel S, Sánchez-Fernández M, Zazo J (2015) A new framework for solving dynamic scheduling games. In: IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 2071-2075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.