×

Bifurcation and number of subharmonic solutions of a 4D non-autonomous slow-fast system and its application. (English) Zbl 1398.34084

Summary: In this paper, we study the existence and bifurcation of subharmonic solutions of a four-dimensional slow-fast system with time-dependent perturbations for the unperturbed system in two cases: one is a Hamilton system and the other has a singular periodic orbit, respectively. We perform the curvilinear coordinate transformation and construct a Poincaré map for both cases. Then some of sufficient conditions and necessary conditions of the existence and bifurcation of subharmonic solutions are obtained by analyzing the Poincaré map. We apply them to study the bifurcation of multiple subharmonic solutions of a honeycomb sandwich plate dynamics system and to discuss the number of subharmonic solutions in different bifurcation regions induced by two parameters. The maximum number of subharmonic solutions of the honeycomb sandwich plate system is 7 and the relative parameter control condition is obtained.

MSC:

34E13 Multiple scale methods for ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Artstein, Z; Slemrod, M, On singularly perturbed retarded functional differential equations, J. Differ. Equ., 171, 88-109, (2001) · Zbl 0987.34070 · doi:10.1006/jdeq.2000.3840
[2] Zheng, YG; Wang, ZH, Relaxation oscillation and attractive basins of a two-neuron Hopfield network with slow and fast variables, Nonlinear Dyn., 70, 1231-1240, (2012) · doi:10.1007/s11071-012-0527-7
[3] Yu, Y; Gao, YB; Han, XJ, Modified function projective bursting synchronization for fast-slow systems with uncertainties and external disturbances, Nonlinear Dyn., 79, 2359-2369, (2015) · doi:10.1007/s11071-014-1817-z
[4] Maree, GJM, Slow periodic crossing of a pitchfork bifurcation in an oscillating system, Nonlinear Dyn., 12, 1-37, (1996) · Zbl 0894.70015 · doi:10.1023/A:1008247430863
[5] Krupa, M; Szmolyan, AP, Extending geometric singular perturbation theory to nonhyperbolic points-fold and canard points in two dimensions, Siam J. Appl. Math., 33, 286-314, (2002) · Zbl 1002.34046 · doi:10.1137/S0036141099360919
[6] Verhulst, F, Singular perturbation methods for slow-fast dynamics, Nonlinear Dyn., 50, 747-753, (2007) · Zbl 1170.70371 · doi:10.1007/s11071-007-9236-z
[7] Zheng, S; Han, X; Bi, Q, Bifurcations and fast-slow behaviors in a hyperchaotic dynamical system, Commun. Nonlinear Sci., 16, 1998-2005, (2011) · Zbl 1221.37074 · doi:10.1016/j.cnsns.2010.08.038
[8] Maesschalck, PD; Schecter, S, The entry-exit function and geometric singular perturbation theory, J. Differ. Equ., 260, 6697-6715, (2016) · Zbl 1342.34078 · doi:10.1016/j.jde.2016.01.008
[9] Wiggins, S; Holmes, P, Homoclinic orbits in slowly varying oscillators, Siam J. Appl. Math., 18, 592-611, (1987) · Zbl 0619.34041 · doi:10.1137/0518046
[10] Stiefenhofer, M, Singular perturbation with Hopf points in the fast dynamics, Z. Angew. Math. Phys., 49, 602-629, (1998) · Zbl 0907.34040 · doi:10.1007/s000000050111
[11] Han, MA; Jiang, K; Green, D, Bifurcations of periodic orbits, subharmonic solutions and invariant tori of high-dimensional systems, Nonlinear Anal. TMA, 36, 319-329, (1999) · Zbl 0922.34035 · doi:10.1016/S0362-546X(97)00669-X
[12] Ye, ZY; Han, MA, Singular limit cycle bifurcations to closed orbits and invariant tori, Chaos Solitons Fract., 27, 758-767, (2006) · Zbl 1083.37042 · doi:10.1016/j.chaos.2005.04.046
[13] Ye, ZY; Han, MA, Bifurcations of invariant tori and subharmonic solutions of singularly perturbed system, Chin. Ann. Math. Ser. B, 28, 135-148, (2007) · Zbl 1136.34043 · doi:10.1007/s11401-005-0081-4
[14] Chiba, H, Periodic orbits and chaos in fast-slow systems with bogdanov-Takens type fold points, J. Differ. Equ., 250, 112-160, (2011) · Zbl 1213.34063 · doi:10.1016/j.jde.2010.09.022
[15] Sourdis, C, On periodic orbits in a slow-fast system with normally elliptic slow manifold, Math. Mehtods Appl. Sci., 37, 270-276, (2014) · Zbl 1375.34087 · doi:10.1002/mma.2971
[16] Han, MA; Li, SM, Perturbations of parallel flows on the sphere in \(R^{3}\), J. Math. Anal. Appl., 351, 224-231, (2009) · Zbl 1165.34018 · doi:10.1016/j.jmaa.2008.10.021
[17] Cima, A; Llibre, J; Teixeira, MA, Limit cycles of some polynomial differential systems in dimension 2, 3 and 4, via averaging theory, Appl. Anal., 87, 149-164, (2008) · Zbl 1362.34047 · doi:10.1080/00036810701556136
[18] Llibre, J; Teixeira, MA; Zeli, IO, Birth of limit cycles for a class of continuous and discontinuous differential systems in \((d+2)\)-dimension, Dyn. Syst., 31, 237-250, (2016) · Zbl 1374.34035 · doi:10.1080/14689367.2015.1102868
[19] Li, CZ; Lu, KN, Slow divergence integral and its application to classical Liénard equations of degree 5, J. Differ. Equ., 257, 4437-4469, (2014) · Zbl 1312.34073 · doi:10.1016/j.jde.2014.08.015
[20] Bobieński, M; Gavrilov, L, Finite cyclicity of slow-fast Darboux systems with a two-saddle loop, Proc. Am. Math. Soc., 144, 4205-4219, (2016) · Zbl 1362.34048 · doi:10.1090/proc/12678
[21] Huzak, R; Maesschalck, PD; Dumortier, F, Limit cycles in slow-fast codimension 3 saddle and elliptic bifurcations, J. Differ. Equ., 255, 4012-4051, (2013) · Zbl 1316.34060 · doi:10.1016/j.jde.2013.07.057
[22] Huzak, R, Regular and slow-fast codimension 4 saddle-node bifurcations, J. Differ. Equ., 262, 1119-1154, (2017) · Zbl 1365.34070 · doi:10.1016/j.jde.2016.10.008
[23] Llibre, J; Rodrigues, A, A non-autonomous kind of Duffing equation, Appl. Math. Comput., 251, 669-674, (2015) · Zbl 1328.34034
[24] Liu C.L.: The vibration and chaos of honeycomb sandwich plate with in-plane and transverse excitations. In: Master Thesis, Beijing University of Technology (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.