×

Uniform regularity for linear kinetic equations with random input based on hypocoercivity. (English) Zbl 1398.65257

Summary: In this paper we study the effect of randomness in kinetic equations that preserve mass. Our focus is in proving the analyticity of the solution with respect to the randomness, which naturally leads to the convergence of numerical methods. The analysis is carried out in a general setting, with the regularity result not depending on the specific form of the collision term, the probability distribution of the random variables, or the regime the system is in and thereby is termed “uniform.” Applications include the linear Boltzmann equation, the Bhatnagar-Gross-Krook (BGK) model, and the Carlemann model, among many others, and the results hold true in kinetic, parabolic, and high field regimes. The proof relies on the explicit expression of the high order derivatives of the solution in the random space, and the convergence in time is mainly based on hypocoercivity, which, despite the popularity in PDE analysis of kinetic theory, has rarely been used for numerical algorithms.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
82C40 Kinetic theory of gases in time-dependent statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] G. Albi, L. Pareschi, and M. Zanella, {\it Uncertainty quantification in control problems for flocking models}, Math. Probl. Eng., (2015), 850124. · Zbl 1394.93074
[2] I. Babuska, F. Nobile, and R. Tempone, {\it Galerkin finite element approximations of stochastic elliptic partial differential equations}, SIAM J. Numer. Anal., 42 (2004), pp. 800-825. · Zbl 1080.65003
[3] I. Babuska, F. Nobile, and R. Tempone, {\it A stochastic collocation method for elliptic partial differential equation with random input data}, SIAM J. Numer. Anal., 45 (2007), pp. 1005-1034. · Zbl 1151.65008
[4] C. Bardos, S. Santos, and R. Sentis, {\it Diffusion approximation and computation of the critical size}, Trans. Amer. Math. Soc., 284 (1984), pp. 617-649. · Zbl 0508.60067
[5] A. Barth, C. Schwab, and N. Zollinger, {\it Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients}, Numer. Math., 119 (2011), pp. 123-161. · Zbl 1230.65006
[6] M. Branicki and A. J. Majda, {\it Fundamental limitations of polynomial chaos for uncertainty quantification in systems with intermittent instabilities}, Commun. Math. Sci., 11 (2013), pp. 55-103. · Zbl 1281.60054
[7] M. Caceres, J. Carrillo, and T. Goudon, {\it Equilibration rate for the linear inhomogeneous relaxation-time Boltzmann equation for charged particles}, Comm. Partial Differential Equations, 28 (2003), pp. 969-989. · Zbl 1045.35094
[8] C. Cercignani, I. M. Gamba, and C. D. Levermore, {\it High field approximations to a Boltzmann-Poisson system boundary conditions in a semiconductor}, Appl. Math Lett., 10 (1997), pp. 111-118. · Zbl 0894.76072
[9] J. Charrier, R. Scheichl, and A. L. Teckentrup, {\it Finite element error analysis of elliptic PDEs with random coefficients and its application to multilevel Monte Carlo methods}, SIAM J. Numer. Anal., 51 (2013), pp. 322-352. · Zbl 1273.65008
[10] A. Chkifa, A. Cohen, and C. Schwab, {\it Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs}, J. Math. Pures Appl., 103 (2014), pp. 400-428. · Zbl 1327.65251
[11] A. Cohen, R. DeVore, and C. Schwab, {\it Convergence rates of best N-term Galerkin approximations for a class of elliptic sPDEs}, Found. Comput. Math., 10 (2010), pp. 615-646. · Zbl 1206.60064
[12] A. Cohen, R. Devore, and C. Schwab, {\it Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’s}, Anal. Appl., 9 (2011), pp. 11-47. · Zbl 1219.35379
[13] B. Despres and B. Perthame, {\it Uncertainty propagation; intrusive kinetic formulations of scalar conservation laws}, SIAM/ASA J. Uncertainty Quantification, 4 (2016), pp. 980-1013. · Zbl 1362.35342
[14] L. Desvillettes, {\it Hypocoercivity: The example of linear transport}, Contemp. Math., 409 (2006), pp. 33-53. · Zbl 1107.35025
[15] L. Desvillettes and F. Salvarani, {\it Asymptotic behavior of degenerate linear transport equations}, Bull. Sci. Math., 133 (2000), pp. 848-858. · Zbl 1180.35102
[16] L. Desvillettes and C. Villani, {\it On the trend to global equilibrium for spatially inhomogeneous entropy-dissipating systems: The linear Fokker-Planck eqution}, Comm. Pure. Appl. Math., 54 (2001), pp. 1-42. · Zbl 1029.82032
[17] L. Desvillettes and C. Villani, {\it On the trend to global equilibrium for spatially inhomogeneous kinetic system: The Boltzmann equation}, Invent. Math., 159 (2005), pp. 245-316. · Zbl 1162.82316
[18] J. Dolbeault, C. Mouhot, and C. Schmeiser, {\it Hypocoercivity for linear kinetic equations conserving mass}, Trans. Amer. Math. Soc., 367 (2015), pp. 3807-3828. · Zbl 1342.82115
[19] D. Xiu and G. Karniadakis, {\it The Wiener-Askey polynomial chaos for stochastic differential equations}, SIAM J. Sci. Comput., 24 (2002), pp. 619-644. · Zbl 1014.65004
[20] G. Fishman, {\it Monte Carlo: Concepts, Algorithms, and Applications}, Springer, New York, 2013.
[21] R. G. Ghanem and A. Doostan, {\it On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data}, J. Comput. Phys., 217 (2006), pp. 63-81. · Zbl 1102.65004
[22] R. G. Ghanem and R. M. Kruger, {\it Numerical solution of spectral stochastic finite element systems}, Comput. Methods Appl. Mech. Engrg., 129 (1996), pp. 289-303. · Zbl 0861.73071
[23] M. B. Giles, {\it Multilevel Monte Carlo path simulation}, Oper. Res., 56 (2008), pp. 607-617. · Zbl 1167.65316
[24] F. Herau, {\it Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation}, Asymptot. Anal., 46 (2006), pp. 349-359. · Zbl 1096.35019
[25] F. Herau and F. Nier, {\it Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential}, Arch. Ration. Mech. Anal., 171 (2004), pp. 151-218. · Zbl 1139.82323
[26] Y. T. Hou, Q. Li, and P. Zhang, {\it Exploring the locally low dimensional structure in solving random elliptic PDEs}, SIAM Multiscale Model. Simul., 15 (2017), pp. 661-695. · Zbl 1365.65015
[27] Y. T. Hou, Q. Li, and P. Zhang, {\it A sparse decomposition of low rank symmetric positive semi-definite matrices}, SIAM Multiscale Model. Simul., 15 (2017), pp. 410-444. · Zbl 1386.65127
[28] J. Hu and S. Jin, {\it A stochastic Galerkin method for the Boltzmann equation with uncertainty}, J. Comput. Phys., 315 (2016), pp. 150-168. · Zbl 1349.82088
[29] S. Jin, J. G. Liu, and Z. Ma, {\it Uniform spectral convergence of the stochastic Galerkin method for the linear transport equations with random inputs in diffusive regime and a micro-macro decomposition based asymptotic preserving method}, Res. Math. Sci., 4 (2017), p. 15. · Zbl 1375.65004
[30] S. Jin and L. Liu, {\it An asymptotic-preserving stochastic Galerkin method for the semiconductor Boltzmann equation with random inputs and diffusive scalings}, SIAM Multiscale Model. Simul., 15 (2017), pp. 157-183. · Zbl 1367.35100
[31] S. Jin and H. Lu, {\it An asymptotic-preserving stochastic Galerkin method for the radiative heat transfer equations with random inputs and diffusive scalings}, J. Comput. Phys., 334 (2017), pp. 182-206. · Zbl 1380.65271
[32] S. Jin and L. Wang, {\it An asymptotic-preserving scheme for the Vlasov-Poisson-Fokker-Planck system in the high field regime}, Acta. Math. Sci. Ser. B Engl. Ed., 31 (2011), pp. 2219-2232. · Zbl 1265.82006
[33] S. Jin and L. Wang, {\it Asymptotic preserving numerical schemes for the semiconductor Boltzmann equation efficient in the high field regime}, SIAM J. Sci. Comput., 35 (2013), pp. B799-B819. · Zbl 1277.82047
[34] S. Jin, D. Xiu, and X. Zhu, {\it Asymptotic-preserving methods for hyperbolic and transport equations with random input and diffusive scalings}, J. Comput. Phys., 289 (2015), pp. 35-52. · Zbl 1352.65407
[35] S. Jin and Y. Zhu, {\it The Vlasov-Poisson-Fokker-Planck system with uncertainty and a one-dimensional asymptotic-preserving method}, Multiscale Model. Simul., 15 (2017) pp. 1502-1529. · Zbl 1378.82047
[36] M. Loeve, {\it Probability Theory} I, 4th ed., Grad. Texts. in Math. 45, Springer, New York, 1977. · Zbl 0359.60001
[37] F. Nobile, R. Tempone, and C. Webster, {\it A sparse grid stochastic collocation method for partial differential equations with random input data}, SIAM J. Numer. Anal., 46 (2008), pp. 2309-2345. · Zbl 1176.65137
[38] F. Nobile, R. Tempone, and C. G. Webster, {\it An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data}, SIAM J. Numer. Anal., 46 (2008), pp. 2411-2442. · Zbl 1176.65007
[39] F. Poupaud, {\it Runaway phenomena and fluid approximation under high fields in semiconductor kinetic theory}, Z. Angew Math. Mech., 72 (1992), pp. 359-372. · Zbl 0785.76067
[40] C. Schwab and R.-A. Todor, {\it Sparse finite elements for elliptic problems with stochastic loading}, Numer. Math., 95 (2003), pp. 707-734. · Zbl 1044.65085
[41] S. Ukai, {\it On the existence of global solutions of mixed problem for non-linear Boltzmann equation}, Proc. Japan Acad., 50 (1974), pp. 179-184. · Zbl 0312.35061
[42] D. Xiu and J. S. Hesthaven, {\it High-order collocation methods for differential equations with random inputs}, SIAM J. Sci. Comput., 27 (2005), pp. 1118-1139. · Zbl 1091.65006
[43] D. Xiu and G. E. Karniadakis, {\it Modeling uncertainty in flow simulations via generalized polynomial chaos}, J. Comput. Phys., 187 (2003), pp. 137-167. · Zbl 1047.76111
[44] G. Zhang and M. Gunzburger, {\it Error analysis of a stochastic collocation method for parabolic partial differential equations with random input data}, SIAM J. Numer. Anal., 50 (2012), pp. 1922-1940. · Zbl 1260.65007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.