×

Modeling elastic wave propagation in fluid-filled boreholes drilled in nonhomogeneous media: BEM-MLPG versus BEM-FEM coupling. (English) Zbl 1403.74235

Summary: The efficiency of two coupling formulations, the boundary element method (BEM)-meshless local Petrov-Galerkin (MLPG) versus the BEM-finite element method (FEM), used to simulate the elastic wave propagation in fluid-filled boreholes generated by a blast load, is compared. The longitudinal geometry is assumed to be invariant in the axial direction (2.5D formulation). The material properties in the vicinity of the borehole are assumed to be nonhomogeneous as a result of the construction process and the ageing of the material. In both models, the BEM is used to tackle the propagation within the fluid domain inside the borehole and the unbounded homogeneous domain. The MLPG and the FEM are used to simulate the confined, damaged, nonhomogeneous, surrounding borehole, thus utilizing the advantages of these methods in modeling nonhomogeneous bounded media. In both numerical techniques the coupling is accomplished directly at the nodal points located at the common interfaces. Continuity of stresses and displacements is imposed at the solid-solid interface, while continuity of normal stresses and displacements and null shear stress are prescribed at the fluid-solid interface. The performance of each coupled BEM-MLPG and BEM-FEM approach is determined using referenced results provided by an analytical solution developed for a circular multi-layered subdomain. The comparison of the coupled techniques is evaluated for different excitation frequencies, axial wavenumbers and degrees of freedom (nodal points).

MSC:

74S15 Boundary element methods applied to problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
65N38 Boundary element methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74B05 Classical linear elasticity
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] (Aliabadi, M. H., The boundary element method: applications in solids and structures, (2002), Wiley) · Zbl 0994.74003
[2] Tadeu, A.; Kausel, E.; Vrettos, C., Scattering of waves by Subterranean structures via the boundary element method, Soil Dyn Earthquake Eng, 15, 6, 387-397, (1996)
[3] Liu, E.; Zhang, Z., Numerical study of elastic wave scattering by cracks or inclusions using the boundary integral equation method, J Comput Acoust, 9, 3, 1039-1054, (2001)
[4] Thompson, L. L., A review of finite-element methods for time-harmonic acoustics, J Acoust Soc Am, 119, 3, 1315-1330, (2006)
[5] Zhang, C.; Zhao, C., Coupling method of finite and infinite elements for strip foundation wave problems, Earthquake Eng Struct Dyn, 15, 839-851, (1987)
[6] Han, X.; Liu, G. R.; Xi, Z. C.; Lam, K. Y., Transient waves in a functionally graded cylinder, Int J Solids Struct, 38, 3021-3037, (2001) · Zbl 0977.74035
[7] Atluri, S. N., The meshless method (MLPG) for domain & BIE discretizations, (2004), Tech. Science Press · Zbl 1105.65107
[8] Sladek, J.; Sladek, V.; VanKeer, R., Meshless local boundary integral equation method for 2D elastodynamic problems, Int J Numer Methods Eng, 57, 235-249, (2003) · Zbl 1062.74643
[9] Hosseini, S. M., Analysis of elastic wave propagation in a functionally graded thick hollow cylinder using a hybrid mesh-free method, Eng Anal Boundary Elem, 36, 1536-1545, (2012) · Zbl 1351.74155
[10] Gu, Y. T.; Liu, G. R., Meshless methods coupled with other numerical methods, Tsinghua Sci Technol, 10, 8-10, (2005) · Zbl 1139.74443
[11] Irons, B. M.; Razzaque, A., Experience with the patch test for convergence of finite element method, (Aziz, A. R., The mathematics of finite elements with application to partial differential equations, (1972), Academic Press USA), 557-587 · Zbl 0279.65087
[12] Taylor, R. L.; Simo, J. C.; Zienkiewicz, O. C.; Chan, A. C.H., The patch test—a condition for assessing FEM convergence, Int J Numer Methods Eng, 22, 1, 39-62, (1986) · Zbl 0593.73072
[13] Schmidt, G.; Strese, H., The convergence of a direct BEM for the plane mixed boundary value problem of the Laplacian, Numerische Math, 57, 2, 145-165, (1989) · Zbl 0661.65116
[14] Vavourakis, V.; Sellountos, E. J.; Polyzos, D., A comparison study on different MLPG (LBIE) formulations, CMES: Comput Model Eng Sci, 13, 3, 171-183, (2006) · Zbl 1232.65163
[15] Augarde, C. E.; Deeks, A. J., On the effects of nodal distributions for imposition of essential boundary conditions in the MLPG meshfree method, Commun Numer Methods Eng, 21, 389-395, (2005) · Zbl 1073.65140
[16] Sladek, V.; Sladek, J.; Zhang, C., A comparative study of meshless approximations in local integral equation method, CMC - Comput Mater Continua, 4, 3, 177-188, (2006)
[17] Sladek, J.; Stanak, P.; Han, Z. D.; Sladek, V.; Atluri, S. N., Applications of the MLPG method in engineering & sciences: a review, CMES: Comput Model Eng Sci, 92, 5, 423-475, (2013)
[18] Mansur, W. J.; Pereira, W. L.A.; Monteiro, C. S.G.; Corrêa, R. S.; Santos, G. T.; Dors, C., A Green’s function based procedure to account for non-quiescent past applied to numerical modeling of seismic offshore surveys, Eng Anal Boundary Elem, 55, 67-79, (2015) · Zbl 1403.86002
[19] Liu, G. R.; Gu, Y. T., Meshless local Petrov-Galerkin (MLPG) method in combination with finite element and boundary element approaches, Comput Mech, 26, 536-546, (2000) · Zbl 0990.74070
[20] Chen, T.; Raju, I. S., A coupled finite element and meshless local Petrov-Galerkin method for two-dimensional potential problems, Comput Methods Appl Mech Eng, 192, 4533-4550, (2003) · Zbl 1037.65115
[21] Zhao, M.; Nie, Y., A study of boundary conditions in the meshless local Petrov-Galerkin (MLPG) method for electromagnetic field computations, CMES: Comput Model Eng Sci, 37, 2, 97-112, (2008)
[22] Zienkiewicz, O. C.; Kelly, D. M.; Bettes, P., The coupling of the finite element method and boundary solution procedures, Int J Numer Methods Eng, 11, 355-376, (1977) · Zbl 0347.65048
[23] Romero, A.; Galvín, P., A BEM-FEM using layered half-space Green’s function in time domain for SSI analyses, Eng Anal Boundary Elem, 55, 93-103, (2015) · Zbl 1403.74121
[24] Coulier, P.; François, S.; Lombaert, G.; Degrande, G., Coupled finite element-hierarchical boundary element methods for dynamic soil-structure interaction in the frequency domain, Int J Numer Methods Eng, 97, 505-530, (2014) · Zbl 1352.74183
[25] Tadeu, A.; Simões, N.; Simões, I., Coupling BEM/TBEM and MFS for the simulation of transient conduction heat transfer, Int J Numer Methods Eng, 84, 2, 179-213, (2010) · Zbl 1202.80024
[26] Godinho, L.; Tadeu, A., Acoustic analysis of heterogeneous domains coupling the BEM with Kansa’s method, Eng Anal Boundary Elem, 36, 1014-1026, (2012) · Zbl 1351.76141
[27] Belytschko, T.; Organ, D.; Krongauz, Y., Coupled finite element - element-free Galerkin method, Comput Mech, 17, 186-195, (1995) · Zbl 0840.73058
[28] Godinho, L.; Amado-Mendes, P.; Pereira, A.; Soares, D., A coupled MFS-FEM model for 2-D dynamic soil-structure interaction in the frequency domain, Comput Struct, 129, 74-85, (2013)
[29] Godinho, L.; Amado-Mendes, P.; Tadeu, A., Meshless analysis of soil-structure interaction using an MFS-MLPG coupled approach, Eng Anal Boundary Elem, 55, 80-92, (2015) · Zbl 1403.65135
[30] Tadeu, A.; Stanak, P.; Sladek, J.; Sladek, V.; Prata, J.; Simões, N. A., Coupled BEM-MLPG technique for the thermal analysis of non-homogeneous media, CMES - Comput Model Eng Scis, 93, 6, 489-516, (2013) · Zbl 1356.74242
[31] Tadeu, A.; Stanak, P.; Sladek, J.; Sladek, V., Coupled BEM-MLPG acoustic analysis for non-homogeneous media, Eng Anal Boundary Elem, 44, 161-169, (2014) · Zbl 1297.65185
[32] Tadeu, A.; Stanak, P.; Antonio, J.; Sladek, J.; Sladek, V., 2.5D elastic wave propagation in non-homogeneous media coupling the BEM and MLPG methods, Eng Anal Boundary Elem, 53, 86-99, (2015) · Zbl 1403.74236
[33] Godinho, L.; Soares, D., Frequency domain analysis of interacting acoustic-elastodynamic models taking into account optimized iterative coupling of different numerical methods, Eng Anal Boundary Elem, 37, 7-8, 1074-1088, (2013) · Zbl 1287.74011
[34] Wendland, W. L., On asymptotic error estimates for combined BEM and FEM, (Stein, E.; Wendland, W., Finite element and boundary element techniques from mathematical and engineering point of view, Vol. 301: CISM international centre for mechanical sciences, (1988)), 273-333 · Zbl 0672.65089
[35] Randall, C. T., Multipole acoustic waveforms in nonaxisymmetric boreholes and formations, J Acoust Soc Am, 90, 1620-1631, (1991)
[36] Leslie, H. D.; Randall, C. T., Multipole sources in boreholes penetrating anisotropic formations: numerical and experimental results, J Acoust Soc Am, 91, 12-27, (1992)
[37] Bouchon, M., A numerical simulation of the acoustic and elastic wavefields radiated by a source in a fluid-filled borehole embedded in a layered medium, Geophysics, 58, 475-481, (1993)
[38] Cheng, N.; Cheng, C. H.; Toksoz, M. N., Borehole wave propagation in three dimensions, J Acoust Soc Am, 97, 3483-3493, (1995)
[39] Dong, W.; Bouchon, M.; Toksfz, M. N., Borehole seismic source radiation in layered isotropic and anisotropic media: boundary element modeling, Geophysics, 60, 735-747, (1995)
[40] Tadeu, A.; Stanak, P.; Antonio, J.; Sladek, J.; Sladek, V., The influence of non-homogeneous material properties on elastic wave propagation in fluid-filled boreholes, CMES - Comput Model Eng Sci, 107, 5, 345-378, (2015) · Zbl 1403.74236
[41] Tadeu, A.; Kausel, E., Green’s functions for two-and-a-half-dimensional elastodynamic problems, ASCE J Eng Mech, 126, 10, 1093-1096, (2000)
[42] Tadeu, A.; Santos, P. F.A.; Kausel, E., Closed-form integration of singular terms for constant, linear and quadratic boundary elements: part I. SH wave propagation, Eng Anal Boundary Elem, 23, 671-681, (1999) · Zbl 0968.74077
[43] Tadeu, A.; Santos, P. F.A.; Kausel, E., Closed-form integration of singular terms for constant, linear and quadratic boundary elements: part II. SV-P wave propagation, Eng Anal Boundary Elem, 23, 757-768, (1999) · Zbl 0973.74087
[44] Wen, P. H.; Aliabadi, M. H., An improved meshless collocation method for elastostatic and elastodynamic problems, Commun Numer Methods Eng, 24, 635-651, (2008) · Zbl 1159.74461
[45] Gavrić, L., Finite element computation of dispersion properties of thin-walled waveguides, J Sound Vib, 173, 113-124, (1994) · Zbl 0925.73810
[46] François, S.; Schevenels, M.; Galvín, P.; Lombaert, G.; Degrande, G., A 2.5D coupled FE-BE methodology for the dynamic interaction between longitudinally invariant structures and a layered halfspace, Comput Methods Appl Mech Eng, 199, 1536-1548, (2010) · Zbl 1231.74409
[47] Gavrić, L., Computation of propagative waves in free rail using a finite element technique, J Sound Vib, 185, 531-543, (1995) · Zbl 1048.74584
[48] Romero, A.; Tadeu, A.; Galvín, P.; António, J., 2.5D coupled BEM-FEM used to model fluid and solid scattering wave, Int J Numer Methods Eng, 101, 148-164, (2015) · Zbl 1352.74427
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.