×

LCP method for a planar passive dynamic Walker based on an event-driven scheme. (English) Zbl 1404.70024

Summary: The main purpose of this paper is to present a linear complementarity problem (LCP) method for a planar passive dynamic walker with round feet based on an event-driven scheme. The passive dynamic walker is treated as a planar multi-rigid-body system. The dynamic equations of the passive dynamic walker are obtained by using Lagrange’s equations of the second kind. The normal forces and frictional forces acting on the feet of the passive walker are described based on a modified Hertz contact model and Coulomb’s law of dry friction. The state transition problem of stick-slip between feet and floor is formulated as an LCP, which is solved with an event-driven scheme. Finally, to validate the methodology, four gaits of the walker are simulated: the stance leg neither slips nor bounces; the stance leg slips without bouncing; the stance leg bounces without slipping; the walker stands after walking several steps.

MSC:

70E60 Robot dynamics and control of rigid bodies
70E55 Dynamics of multibody systems
70F40 Problems involving a system of particles with friction
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] McGeer, T, Passive dynamic walking, Int. J. Robot. Res., 9, 62-82, (1990) · doi:10.1177/027836499000900206
[2] Garcia, M; Chatterjee, A; Ruina, A, Efficiency, speed, and scaling of two-dimensional passive-dynamic walking, Dynam. Stab. Syst., 15, 75-99, (2000) · Zbl 0964.92004 · doi:10.1080/713603737
[3] Walsh, C.J., Paluska, D., Pasch, K., et al.: Development of a lightweight, underactuated exoskeleton for load-carrying augmentation. In: IEEE International Conference on Robotics and Automation, ICRA 2006, May 15-19, Orlando, Florida, USA, 3485-3491 (2006)
[4] Collins, S; Ruina, A; Tedrake, R; etal., Efficient bipedal robots based on passive-dynamic walkers, Science, 307, 1082-1085, (2005) · doi:10.1126/science.1107799
[5] Kuo, AD, Biophysics. harvesting energy by improving the economy of human walking, Science, 309, 1686-1687, (2005) · doi:10.1126/science.1118058
[6] Alexander, MN, Walking made simple, Science, 308, 58-59, (2005)
[7] Liu, N; Li, J; Wang, T, Passive Walker that can walk down steps: simulations and experiments, Acta Mech. Sin., 24, 569-573, (2008) · Zbl 1257.70014 · doi:10.1007/s10409-008-0175-9
[8] Liu, N; Li, J; Wang, T, The effects of parameter variation on the gaits of passive walking models: simulations and experiments, Robotica, 27, 511-528, (2009) · doi:10.1017/S0263574708004633
[9] Gritli, H; Belghith, S, Computation of the Lyapunov exponents in the compass-gait model under OGY control via a hybrid Poincaré map, Chaos Solitons Fractals, 81, 172-183, (2015) · Zbl 1355.93130 · doi:10.1016/j.chaos.2015.09.011
[10] Gritli, H; Belghith, S, Bifurcations and chaos in the semi-passive bipedal dynamic walking model under a modified OGY-based control approach, Nonlinear Dyn., 83, 1955-1973, (2016) · doi:10.1007/s11071-015-2458-6
[11] Gritli, H; Belghith, S, Walking dynamics of the passive compass-gait model under OGY-based control: emergence of bifurcations and chaos, Commun. Nonlinear Sci. Numer. Simul., 47, 308-327, (2017) · Zbl 1372.70068 · doi:10.1016/j.cnsns.2016.11.022
[12] Gritli, H; Belghith, S, Walking dynamics of the passive compass-gait model under OGY-based state-feedback control: analysis of local bifurcations via the hybrid Poincaré map, Chaos Solitons Fractals, 98, 72-87, (2017) · Zbl 1372.70068 · doi:10.1016/j.chaos.2017.03.004
[13] Qi, F; Wang, T; Li, J, The elastic contact influences on passive walking gaits, Robotica, 29, 787-796, (2011) · doi:10.1017/S0263574710000779
[14] Qi, F; Bi, LY; Wang, TS; etal., The experimental study on the contact process of passive walking, Acta Mech. Sin., 28, 1163-1168, (2012) · doi:10.1007/s10409-012-0093-8
[15] Asano, F, Stability analysis of underactuated compass gait based on linearization of motion, Multibody Syst. Dyn., 33, 93-111, (2015) · Zbl 1361.70007 · doi:10.1007/s11044-014-9416-9
[16] Asano, F., Saka, T., Fujimoto, T.: Passive dynamic walking of compass-like biped robot on slippery downhill. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg, Germany, 4113-4118 (2015)
[17] Asano, F., Saka, T., Harata, Y.: 3-DOF passive dynamic walking of compass-like biped robot with semicircular feet generated on slippery downhill. In: IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 3570-3575 (2016)
[18] Asano, F., Seino, T., Tokuda, I., et al.: A novel locomotion robot that slides and rotates on slippery downhill. In: IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Banff, Alberta, Canada, 425-430 (2016)
[19] Pennestrì, E; Rossi, V; Salvini, P; etal., Review and comparison of dry friction force models, Nonlinear Dyn., 83, 1785-1801, (2016) · Zbl 1353.74057 · doi:10.1007/s11071-015-2485-3
[20] Gamus, B; Or, Y, Dynamic bipedal walking under stick-slip transitions, SIAM J. Appl. Dyn. Syst., 14, 609-642, (2015) · Zbl 1342.70018 · doi:10.1137/140956816
[21] Pfeiffer, F, On non-smooth dynamics, Meccanica, 43, 533-554, (2008) · Zbl 1163.70305 · doi:10.1007/s11012-008-9139-1
[22] Zhao, Z; Liu, C; Chen, B; etal., Asymptotic analysis of painlevé’s paradox, Multibody Syst. Dyn., 35, 299-319, (2015) · Zbl 1343.74027 · doi:10.1007/s11044-014-9448-1
[23] Zhao, Z; Liu, C, Contact constraints and dynamical equations in Lagrangian systems, Multibody Syst. Dyn., 38, 77-99, (2016) · Zbl 1372.70051 · doi:10.1007/s11044-016-9503-1
[24] Wang, QT; Tian, Q; Hu, HY, Contact dynamics of elasto-plastic thin beams simulated via absolute nodal coordinate formulation, Acta Mech. Sin., 32, 525-534, (2016) · Zbl 1348.74204 · doi:10.1007/s10409-015-0533-3
[25] Wang, Q; Tian, Q; Hu, H, Dynamic simulation of frictional multi-zone contacts of thin beams, Nonlinear Dyn., 83, 1919-1937, (2016) · doi:10.1007/s11071-015-2456-8
[26] Zhuang, F; Wang, Q, Modeling and simulation of the nonsmooth planar rigid multibody systems with frictional translational joints, Multibody Syst. Dyn., 29, 403-423, (2013)
[27] Zhuang, FF; Wang, Q, Modeling and analysis of rigid multibody systems with driving constraints and frictional translation joints, Acta Mech. Sin., 30, 437-446, (2014) · Zbl 1346.70009 · doi:10.1007/s10409-014-0021-1
[28] Wang, X; Lv, J, Modeling and simulation of dynamics of a planar-motion rigid body with friction and surface contact, Int. J. Mod. Phys. B, 31, 1744021, (2017) · Zbl 1370.70026 · doi:10.1142/S0217979217440210
[29] Duan, W; Wang, Q; Wang, T, Simulation research of a passive dynamic Walker with round feet based on non-smooth method, Lixue Xuebao/Chin. J. Theor. Appl. Mech., 43, 765-774, (2011)
[30] Johnson, K.L.: One hundred years of Hertz contact. Proc. Inst. Mech. Eng. 196, 363-378 (1982)
[31] Johnson, KL, Contact mechanics, J. Tribol., 108, 464, (1985) · Zbl 0599.73108
[32] Yigit, AS; Ulsoy, AG; Scott, RA, Spring-dashpot models for the dynamics of a radially rotating beam with impact, J. Sound Vib., 142, 515-525, (1990) · doi:10.1016/0022-460X(90)90665-M
[33] Machado, M; Moreira, P; Flores, P; etal., Compliant contact force models in multibody dynamics: evolution of the Hertz contact theory, Mech. Mach. Theory, 53, 99-121, (2012) · doi:10.1016/j.mechmachtheory.2012.02.010
[34] Koshy, CS; Flores, P; Lankarani, HM, Study of the effect of contact force model on the dynamic response of mechanical systems with dry clearance joints: computational and experimental approaches, Nonlinear Dyn., 73, 325-338, (2013) · doi:10.1007/s11071-013-0787-x
[35] Wang, Q; Peng, H; Zhuang, F, A constraint-stabilized method for multibody dynamics with friction-affected translational joints based on HLCP, Discrete Cont. Dyn. B, 2, 589-605, (2011) · Zbl 1385.70031
[36] Flores, P; Leine, R; Glocker, C, Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach, Multibody Syst. Dyn., 23, 165-190, (2010) · Zbl 1219.70014 · doi:10.1007/s11044-009-9178-y
[37] Glocker, C.: Set-Valued Force Laws: Dynamics of Non-Smooth Systems. In: Lecture Notes in Applied & Computational Mechanics, Vol. 1, Springer-Verlag Berlin Heidelberg (2001) · Zbl 0979.70001
[38] Cottle, RW; Dantzig, GB, Complementary pivot theory of mathematical programming, Linear Algebra Appl., 1, 103-125, (1968) · Zbl 0155.28403 · doi:10.1016/0024-3795(68)90052-9
[39] Leine, RI; Campen, DHV; Glocker, CH, Nonlinear dynamics and modeling of various wooden toys with impact and friction, J. Vib. Control, 9, 25-78, (2003) · Zbl 1045.70008 · doi:10.1177/1077546303009001741
[40] Mcgeer, T, Passive bipedal running, Proc. R. Soc. Lond., 240, 107-134, (1990) · doi:10.1098/rspb.1990.0030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.