×

Back reaction of 4D conformal fields on static black-hole geometry. (English) Zbl 1404.83031

Summary: Static, spherically symmetric black hole solutions to the semi-classical Einstein equation are studied, including the effect of the quantum energy-momentum tensor for conformal matters with 4D Weyl anomaly. Through both perturbative and non-perturbative methods, we show that the quantum effect can play a crucial role in shaping the nearhorizon geometry, and that the existence of the horizon requires fine-tuning.

MSC:

83C47 Methods of quantum field theory in general relativity and gravitational theory
83C57 Black holes
81T50 Anomalies in quantum field theory
53Z05 Applications of differential geometry to physics
83C15 Exact solutions to problems in general relativity and gravitational theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] S.W. Hawking, Particle creation by black holes, Commun. Math. Phys.43 (1975) 199 [Erratum ibid.46 (1976) 206] [INSPIRE]. · Zbl 1378.83040
[2] Hawking, SW, Breakdown of predictability in gravitational collapse, Phys. Rev., D 14, 2460, (1976)
[3] S.W. Hawking, The information paradox for black holes, arXiv:1509.01147 [INSPIRE]. · Zbl 1118.83010
[4] Mathur, SD, The information paradox: a pedagogical introduction, Class. Quant. Grav., 26, 224001, (2009) · Zbl 1181.83129 · doi:10.1088/0264-9381/26/22/224001
[5] Marolf, D., The black hole information problem: past, present and future, Rept. Prog. Phys., 80, (2017) · doi:10.1088/1361-6633/aa77cc
[6] Lunin, O.; Mathur, SD, AdS/CFT duality and the black hole information paradox, Nucl. Phys., B 623, 342, (2002) · Zbl 1036.83503 · doi:10.1016/S0550-3213(01)00620-4
[7] Lunin, O.; Mathur, SD, Statistical interpretation of Bekenstein entropy for systems with a stretched horizon, Phys. Rev. Lett., 88, 211303, (2002) · Zbl 1246.83129 · doi:10.1103/PhysRevLett.88.211303
[8] Mathur, SD, The fuzzball proposal for black holes: an elementary review, Fortsch. Phys., 53, 793, (2005) · Zbl 1116.83300 · doi:10.1002/prop.200410203
[9] Skenderis, K.; Taylor, M., The fuzzball proposal for black holes, Phys. Rept., 467, 117, (2008) · doi:10.1016/j.physrep.2008.08.001
[10] S.D. Mathur, Resolving the black hole causality paradox, arXiv:1703.03042 [INSPIRE]. · Zbl 0976.83075
[11] Almheiri, A.; Marolf, D.; Polchinski, J.; Sully, J., Black holes: complementarity or firewalls?, JHEP, 02, 062, (2013) · Zbl 1342.83121 · doi:10.1007/JHEP02(2013)062
[12] Braunstein, SL; Pirandola, S.; Życzkowski, K., Better late than never: information retrieval from black holes, Phys. Rev. Lett., 110, 101301, (2013) · doi:10.1103/PhysRevLett.110.101301
[13] Braunstein, SL; Pirandola, S.; Życzkowski, K., Better late than never: information retrieval from black holes, Phys. Rev. Lett., 110, 101301, (2013) · doi:10.1103/PhysRevLett.110.101301
[14] Christensen, SM; Fulling, SA, Trace anomalies and the Hawking effect, Phys. Rev., D 15, 2088, (1977)
[15] Davies, PCW; Fulling, SA; Unruh, WG, Energy momentum tensor near an evaporating black hole, Phys. Rev., D 13, 2720, (1976)
[16] Ho, P-M; Matsuo, Y., Static black holes with back reaction from vacuum energy, Class. Quant. Grav., 35, (2018) · Zbl 1386.83083 · doi:10.1088/1361-6382/aaac8f
[17] Fabbri, A.; etal., Semiclassical zero-temperature corrections to Schwarzschild spacetime and holography, Phys. Rev., D 73, 104023, (2006)
[18] Fabbri, A.; etal., Static quantum corrections to the Schwarzschild spacetime, J. Phys. Conf. Ser., 33, 457, (2006) · doi:10.1088/1742-6596/33/1/059
[19] S.N. Solodukhin, Can black hole relax unitarily?, hep-th/0406130 [INSPIRE].
[20] Solodukhin, SN, Restoring unitarity in BTZ black hole, Phys. Rev., D 71, (2005)
[21] Damour, T.; Solodukhin, SN, Wormholes as black hole foils, Phys. Rev., D 76, (2007) · Zbl 1222.83095
[22] Ho, P-M; Matsuo, Y., Static black hole and vacuum energy: thin shell and incompressible fluid, JHEP, 03, 096, (2018) · Zbl 1388.83464 · doi:10.1007/JHEP03(2018)096
[23] Parentani, R.; Piran, T., The internal geometry of an evaporating black hole, Phys. Rev. Lett., 73, 2805, (1994) · Zbl 1020.83619 · doi:10.1103/PhysRevLett.73.2805
[24] Ho, P-M; Matsuo, Y., On the near-horizon geometry of an evaporating black hole, JHEP, 07, 047, (2018) · Zbl 1395.83054 · doi:10.1007/JHEP07(2018)047
[25] Berthiere, C.; Sarkar, D.; Solodukhin, SN, The fate of black hole horizons in semiclassical gravity, Phys. Lett., B 786, 21, (2018) · doi:10.1016/j.physletb.2018.09.027
[26] Kawai, H.; Matsuo, Y.; Yokokura, Y., A self-consistent model of the black hole evaporation, Int. J. Mod. Phys., A 28, 1350050, (2013) · Zbl 1380.83149 · doi:10.1142/S0217751X13500504
[27] Kawai, H.; Yokokura, Y., Phenomenological description of the interior of the Schwarzschild black hole, Int. J. Mod. Phys., A 30, 1550091, (2015) · Zbl 1325.83018 · doi:10.1142/S0217751X15500918
[28] Ho, P-M, Comment on self-consistent model of black hole formation and evaporation, JHEP, 08, 096, (2015) · Zbl 1388.83463 · doi:10.1007/JHEP08(2015)096
[29] Kawai, H.; Yokokura, Y., Interior of black holes and information recovery, Phys. Rev., D 93, (2016)
[30] Ho, P-M, The absence of horizon in black-hole formation, Nucl. Phys., B 909, 394, (2016) · Zbl 1342.83172 · doi:10.1016/j.nuclphysb.2016.05.016
[31] Ho, P-M, Asymptotic black holes, Class. Quant. Grav., 34, (2017) · Zbl 1368.83041 · doi:10.1088/1361-6382/aa641e
[32] Kawai, H.; Yokokura, Y., A model of black hole evaporation and 4D Weyl anomaly, Universe, 3, 51, (2017) · doi:10.3390/universe3020051
[33] Buchdahl, HA, General relativistic fluid spheres, Phys. Rev., 116, 1027, (1959) · Zbl 0092.20802 · doi:10.1103/PhysRev.116.1027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.