Campbell, Trevor; Cai, Diana; Broderick, Tamara Exchangeable trait allocations. (English) Zbl 1411.62068 Electron. J. Stat. 12, No. 2, 2290-2322 (2018). The contributions in this paper are as follows: a de Finetti representation theorem for (both regular and irregular) exchangeable trait allocations, a correspondence theorem between random trait allocations with a frequency model and those with an exchangeable partition probability function, and the introduction and study of the constrained exchangeable partition probability function for capturing random trait allocations with constrained index memberships. Reviewer: Denis Sidorov (Irkutsk) Cited in 6 Documents MSC: 62F15 Bayesian inference 62F05 Asymptotic properties of parametric tests 60K35 Interacting random processes; statistical mechanics type models; percolation theory Keywords:trait allocation; exchangeability; paintbox; probability function; partition; feature allocation; graph; vertex allocation; edge exchangeability Software:plfit PDF BibTeX XML Cite \textit{T. Campbell} et al., Electron. J. Stat. 12, No. 2, 2290--2322 (2018; Zbl 1411.62068) Full Text: DOI arXiv Euclid References: [1] Ackerman, N. (2015). Representations of aut(M)-invariant measures: part 1., arXiv:1509.06170. [2] Aldous, D. (1981). Representations for partially exchangeable arrays of random variables., Journal of Multivariate Analysis11 581–598. · Zbl 0474.60044 [3] Aldous, D. (1985)., Exchangeability and related topics. École d’été de probabilités de Saint-Flour, XIII. Springer, Berlin. [4] Borgs, C., Chayes, J., Cohn, H. and Holden, N. (2018). Sparse exchangeable graphs and their limits via graphon processes., Journal of Machine Learning Research18 1–71. · Zbl 1469.60158 [5] Broderick, T. and Cai, D. (2015). Edge-exchangeable graphs and sparsity. In, NIPS Workshop on Networks in the Social and Information Sciences. [6] Broderick, T., Pitman, J. and Jordan, M. (2013). Feature allocations, probability functions, and paintboxes., Bayesian Analysis8 801–836. · Zbl 1329.62278 [7] Broderick, T. and Steorts, R. (2014). Variational Bayes for merging noisy databases. In, NIPS Workshop on Advances in Variational Inference. [8] Broderick, T., Wilson, A. and Jordan, M. (2018). Posteriors, conjugacy, and exponential families for completely random measures., Bernoulli24 3181–3221. · Zbl 1415.62011 [9] Broderick, T., Mackey, L., Paisley, J. and Jordan, M. (2015). Combinatorial clustering and the beta negative binomial process., IEEE transactions on pattern analysis and machine intelligence37 290–306. [10] Bustamante, C., Wakeley, J., Sawyer, S. and Hartl, D. (2001). Directional selection and the site-frequency spectrum., Genetics159 1779–1788. [11] Cai, D., Campbell, T. and Broderick, T. (2016). Edge-exchangeable graphs and sparsity. In, Advances in Neural Information Processing Systems. [12] Caron, F. and Fox, E. (2017). Sparse graphs using exchangeable random measures., Journal of the Royal Statistical Society Series B79 1295–1366. · Zbl 1381.62072 [13] Clauset, A., Shalizi, C. R. and Newman, M. (2009). Power-law distributions in empirical data., SIAM Review51 661–703. · Zbl 1176.62001 [14] Crane, H. and Dempsey, W. (2015). A framework for statistical network modeling., arXiv:1509.08185. [15] Crane, H. and Dempsey, W. (2016a). Edge exchangeable models for network data., arXiv:1603.04571v3. · Zbl 1402.90027 [16] Crane, H. and Dempsey, W. (2016b). Relational Exchangeability., arXiv:1607.06762v1. · Zbl 1418.60027 [17] Crane, H. and Towsner, H. (2015). Relatively exchangeable structures., arXiv:1509.06733. · Zbl 1496.03160 [18] de Finetti, B. (1931). Funzione caratteristica di un fenomeno aleatorio., Atti della R. Academia Nazionale dei Lincei, Serie 6.4 251–299. In Italian. · JFM 57.0610.01 [19] Doshi-Velez, F. and Williamson, S. (2017). Restricted Indian buffet processes., Statistical Computing27 1205–1223. · Zbl 1505.62129 [20] Dummit, D. and Foote, R. (2004)., Abstract algebra, 3\^{}{rd} ed. Wiley, Hoboken. · Zbl 1037.00003 [21] Escobar, M. (1994). Estimating normal means with a Dirichlet process prior., Journal of the American Statistical Association89 268–277. · Zbl 0791.62039 [22] Escobar, M. and West, M. (1995). Bayesian density estimation and inference using mixtures., Journal of the American Statistical Association90 577–588. · Zbl 0826.62021 [23] Goldenberg, A., Zheng, A., Fienberg, S. and Airoldi, E. (2010). A survey of statistical network models., Foundations and Trends in Machine Learning2 129–233. · Zbl 1184.68030 [24] Griffiths, T. and Ghahramani, Z. (2005). Infinite latent feature models and the Indian buffet process. In, Advances in Neural Information Processing Systems. [25] Herlau, T. and Schmidt, M. (2016). Completely random measures for modelling block-structured sparse networks. In, Advances in Neural Information Processing Systems. [26] Hewitt, E. and Savage, L. (1955). Symmetric measures on Cartesian products., Transactions of the American Mathematical Society80 470–501. · Zbl 0066.29604 [27] Ishwaran, H. and James, L. (2001). Gibbs sampling methods for stick-breaking priors., Journal of the American Statistical Association96 161–173. · Zbl 1014.62006 [28] Ishwaran, H. and James, L. (2003). Generalized weighted Chinese restaurant processes for species sampling mixture models., Statistica Sinica13. · Zbl 1086.62036 [29] James, L. (2017). Bayesian Poisson calculus for latent feature modeling via generalized Indian buffet process priors., Annals of Statistics45 2016–2045. · Zbl 1435.62124 [30] Jordan, M. (2010). Bayesian nonparametric learning: expressive priors for intelligent systems. In, Heuristics, probability and causality: a tribute to Judea Pearl (R. Dechter, H. Geffner and J. Halpern, eds.) College Publications. · Zbl 1216.68293 [31] Kallenberg, O. (1997)., Foundations of modern probability, 1\^{}{st} ed. Probability and its applications. Springer, New York. · Zbl 0892.60001 [32] Kingman, J. F. C. (1978). The representation of partition structures., Journal of the London Mathematical Society2 374–380. · Zbl 0415.92009 [33] Lee, J., Quintana, F., Müller, P. and Trippa, L. (2013). Defining predictive probability functions for species sampling models., Statistical Science28 209–222. · Zbl 1331.62152 [34] Lloyd, J. R., Orbanz, P., Ghahramani, Z. and Roy, D. (2012). Random function priors for exchangeable arrays with applications to graphs and relational data. In, Advances in Neural Information Processing Systems. [35] Miller, J., Betancourt, B., Zaidi, A., Wallach, H. and Steorts, R. (2016). Microclustering: when the cluster sizes grow sublinearly with the size of the data set., Advances in Neural Information Processing Systems. [36] Mitzenmacher, M. (2003). A brief history of generative models for power law and lognormal distributions., Internet Mathematics1 226–251. · Zbl 1063.68526 [37] Newman, M. (2005). Power laws, Pareto distributions and Zipf’s law., Contemporary physics46 323–351. [38] Palla, K., Caron, F. and Teh, Y. W. (2016). Bayesian nonparametrics for sparse dynamic networks., arXiv:1607.01624. [39] Pitman, J. (1995). Exchangeable and partially exchangeable random partitions., Probability Theory and Related Fields102 145–158. · Zbl 0821.60047 [40] Pitman, J. and Yor, M. (1997). The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator., The Annals of Probability 855–900. · Zbl 0880.60076 [41] Ross, N. (2011). Fundamentals of Stein’s method., Probability Surveys8 210–293. · Zbl 1245.60033 [42] Roy, D. (2014). The continuum-of-urns scheme, generalized beta and Indian buffet processes, and hierarchies thereof., arXiv:1501.00208. [43] Roychowdhury, A. and Kulis, B. (2015). Gamma processes, stick-breaking, and variational inference. In, International Conference on Artificial Intelligence and Statistics. [44] Thibaux, R. and Jordan, M. (2007). Hierarchical beta processes and the Indian buffet process. In, International Conference on Artificial Intelligence and Statistics. [45] Titsias, M. (2008). The infinite gamma-Poisson feature model. In, Advances in Neural Information Processing Systems. [46] Veitch, V. and Roy, D. (2015). The class of random graphs arising from exchangeable random measures., arXiv:1512.03099. [47] Wallach, H., Jensen, S., Dicker, L. and Heller, K. (2010). an alternative prior process for nonparametric Bayesian clustering. In, International Conference on Artificial Intelligence and Statistics. [48] Williamson, S. (2016). Nonparametric network models for link prediction., Journal of Machine Learning Research17 1–21. · Zbl 1436.62156 [49] Williamson, S., MacEachern, S. and Xing, E. (2013). Restricting exchangeable nonparametric distributions. In, Advances in Neural Information Processing Systems. [50] Zhou, M. (2014). Beta-negative binomial process and exchangeable random partitions for mixed-membership modeling. In, Advances in Neural Information Processing Systems. [51] Zhou, M., Hannah, L., Dunson, D. and Carin, L. (2012). Beta-negative binomial process and Poisson factor analysis. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.