×

Turbocharger turbine and exhaust manifold flow computation with the space-time variational multiscale method and isogeometric analysis. (English) Zbl 1411.76070

Summary: We address the computational challenges encountered in turbocharger turbine and exhaust manifold flow analysis. The core computational method is the space-time variational multiscale (ST-VMS) method, and the other key methods are the ST isogeometric analysis (ST-IGA), ST slip interface (ST-SI) method, ST/NURBS mesh update method (STNMUM), and a general-purpose NURBS mesh generation method for complex geometries. The ST framework, in a general context, provides higher-order accuracy. The VMS feature of the ST-VMS addresses the computational challenges associated with the multiscale nature of the unsteady flow in the manifold and turbine, and the moving-mesh feature of the ST framework enables high-resolution computation near the rotor surface. The ST-SI enables moving-mesh computation of the spinning rotor. The mesh covering the rotor spins with it, and the SI between the spinning mesh and the rest of the mesh accurately connects the two sides of the solution. The ST-IGA enables more accurate representation of the turbine and manifold geometries and increased accuracy in the flow solution. The STNMUM enables exact representation of the mesh rotation. The general-purpose NURBS mesh generation method makes it easier to deal with the complex geometries we have here. An SI also provides mesh generation flexibility in a general context by accurately connecting the two sides of the solution computed over nonmatching meshes. That is enabling us to use nonmatching NURBS meshes here. Stabilization parameters and element length definitions play a significant role in the ST-VMS and ST-SI. For the ST-VMS, we use the stabilization parameters introduced recently, and for the ST-SI, the element length definition we are introducing here. The model we actually compute with includes the exhaust gas purifier, which makes the turbine outflow conditions more realistic. We compute the flow for a full intake/exhaust cycle, which is much longer than the turbine rotation cycle because of high rotation speeds, and the long duration required is an additional computational challenge. The computation demonstrates that the methods we use here are very effective in this class of challenging flow analyses.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65D07 Numerical computation using splines
76N15 Gas dynamics (general theory)
76T15 Dusty-gas two-phase flows

Software:

SUPG
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Corsini, A.; Rispoli, F.; Sheard, A. G.; Tezduyar, T. E., Computational analysis of noise reduction devices in axial fans with stabilized finite element formulations, Comput Mech, 50, 695-705 (2012) · Zbl 1311.76121
[2] Corsini, A.; Rispoli, F.; Sheard, A. G.; Takizawa, K.; Tezduyar, T. E.; Venturini, P., A variational multiscale method for particle-cloud tracking in turbomachinery flows, Comput Mech, 54, 1191-1202 (2014) · Zbl 1311.76030
[3] Cardillo, L.; Corsini, A.; Delibra, G.; Rispoli, F.; Tezduyar, T. E., Flow analysis of a wave-energy air turbine with the SUPG/PSPG method and DCDD, (Bazilevs, Y.; Takizawa, K., Advances in computational fluid – structure interaction and flow simulation: new methods and challenging computations. Advances in computational fluid – structure interaction and flow simulation: new methods and challenging computations, Modeling and simulation in science, engineering and technology (2016), Springer), 39-53 · Zbl 1356.76159
[4] Cardillo, L.; Corsini, A.; Delibra, G.; Rispoli, F.; Tezduyar, T. E., Flow analysis of a wave-energy air turbine with the SUPG/PSPG stabilization and Discontinuity-Capturing Directional Dissipation, Comput Fluids, 141, 184-190 (2016) · Zbl 1390.76295
[5] Castorrini, A.; Corsini, A.; Rispoli, F.; Venturini, P.; Takizawa, K.; Tezduyar, T. E., SUPG/PSPG computational analysis of rain erosion in wind-turbine blades, (Bazilevs, Y.; Takizawa, K., Advances in computational fluid – structure interaction and flow simulation: new methods and challenging computations. Advances in computational fluid – structure interaction and flow simulation: new methods and challenging computations, Modeling and simulation in science, engineering and technology (2016), Springer), 77-96 · Zbl 1356.76160
[6] Castorrini, A.; Corsini, A.; Rispoli, F.; Venturini, P.; Takizawa, K.; Tezduyar, T. E., Computational analysis of wind-turbine blade rain erosion, Comput Fluids, 141, 175-183 (2016) · Zbl 1390.76298
[7] Bazilevs, Y.; Hsu, M.-C.; Akkerman, I.; Wright, S.; Takizawa, K.; Henicke, B., 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics, Int J Numer Methods Fluids, 65, 207-235 (2011) · Zbl 1428.76086
[8] Bazilevs, Y.; Takizawa, K.; Tezduyar, T. E.; Hsu, M.-C.; Kostov, N.; McIntyre, S., Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods, Arch Comput Methods Eng, 21, 359-398 (2014) · Zbl 1348.74095
[9] Korobenko A., Bazilevs Y., Takizawa K., Tezduyar T.E. Recent advances in ALE-VMS and ST-VMS computational aerodynamic and FSI analysis of wind turbines; 2018. To appear in a special volume to be published by Springer.; Korobenko A., Bazilevs Y., Takizawa K., Tezduyar T.E. Recent advances in ALE-VMS and ST-VMS computational aerodynamic and FSI analysis of wind turbines; 2018. To appear in a special volume to be published by Springer.
[10] Takizawa, K.; Tezduyar, T. E.; Otoguro, Y.; Terahara, T.; Kuraishi, T.; Hattori, H., Turbocharger flow computations with the Space-Time Isogeometric Analysis (ST-IGA), Comput Fluids, 142, 15-20 (2017) · Zbl 1390.76689
[11] Otoguro, Y.; Takizawa, K.; Tezduyar, T. E., Space – time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method, Comput Fluids, 158, 189-200 (2017) · Zbl 1390.76345
[12] Otoguro Y, Takizawa K, Tezduyar T.E. A general-purpose NURBS mesh generation method for complex geometries; 2018. To appear in a special volume to be published by Springer.; Otoguro Y, Takizawa K, Tezduyar T.E. A general-purpose NURBS mesh generation method for complex geometries; 2018. To appear in a special volume to be published by Springer. · Zbl 1390.76345
[13] Takizawa, K.; Tezduyar, T. E., Multiscale space – time fluid – structure interaction techniques, Comput Mech, 48, 247-267 (2011) · Zbl 1398.76128
[14] Takizawa, K.; Tezduyar, T. E., Space – time fluid – structure interaction methods, Math Models Methods Appl Sci, 22, supp02, 1230001 (2012) · Zbl 1248.76118
[15] Takizawa, K.; Tezduyar, T. E.; Kuraishi, T., Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires, Math Models Methods Appl Sci, 25, 2227-2255 (2015) · Zbl 1325.76139
[16] Takizawa, K.; Henicke, B.; Puntel, A.; Spielman, T.; Tezduyar, T. E., Space – time computational techniques for the aerodynamics of flapping wings, J Appl Mech, 79, 010903 (2012)
[17] Takizawa, K.; Tezduyar, T. E.; Mochizuki, H.; Hattori, H.; Mei, S.; Pan, L., Space – time VMS method for flow computations with slip interfaces (ST-SI), Math Models Methods Appl Sci, 25, 2377-2406 (2015) · Zbl 1329.76345
[18] Takizawa, K.; Tezduyar, T. E.; Kuraishi, T.; Tabata, S.; Takagi, H., Computational thermo-fluid analysis of a disk brake, Comput Mech, 57, 965-977 (2016) · Zbl 1382.74044
[19] Takizawa, K.; Henicke, B.; Puntel, A.; Kostov, N.; Tezduyar, T. E., Space – time techniques for computational aerodynamics modeling of flapping wings of an actual locust, Comput Mech, 50, 743-760 (2012) · Zbl 1286.76179
[20] Takizawa, K.; Kostov, N.; Puntel, A.; Henicke, B.; Tezduyar, T. E., Space – time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle, Comput Mech, 50, 761-778 (2012) · Zbl 1286.76180
[21] Takizawa, K.; Tezduyar, T. E.; McIntyre, S.; Kostov, N.; Kolesar, R.; Habluetzel, C., Space – time VMS computation of wind-turbine rotor and tower aerodynamics, Comput Mech, 53, 1-15 (2014) · Zbl 1398.76129
[22] Tezduyar, T. E., Stabilized finite element formulations for incompressible flow computations, Adv Appl Mech, 28, 1-44 (1992) · Zbl 0747.76069
[23] Tezduyar, T. E., Computation of moving boundaries and interfaces and stabilization parameters, Int J Numer Methods Fluids, 43, 555-575 (2003) · Zbl 1032.76605
[24] Tezduyar, T. E.; Sathe, S., Modeling of fluid – structure interactions with the space – time finite elements: solution techniques, Int J Numer Methods Fluids, 54, 855-900 (2007) · Zbl 1144.74044
[25] Brooks, A. N.; Hughes, T. J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput Methods Appl Mech Eng, 32, 199-259 (1982) · Zbl 0497.76041
[26] Hughes, T. J.R., Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods, Comput Methods Appl Mech Eng, 127, 387-401 (1995) · Zbl 0866.76044
[27] Hughes, T. J.R.; Oberai, A. A.; Mazzei, L., Large eddy simulation of turbulent channel flows by the variational multiscale method, Phys Fluids, 13, 1784-1799 (2001) · Zbl 1184.76237
[28] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Hughes, T. J.R.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput Methods Appl Mech Eng, 197, 173-201 (2007) · Zbl 1169.76352
[29] Bazilevs, Y.; Akkerman, I., Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual – based variational multiscale method, J Comput Phys, 229, 3402-3414 (2010) · Zbl 1290.76037
[30] Hughes, T. J.R.; Liu, W. K.; Zimmermann, T. K., Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Comput Methods Appl Mech Eng, 29, 329-349 (1981) · Zbl 0482.76039
[31] Bazilevs, Y.; Calo, V. M.; Hughes, T. J.R.; Zhang, Y., Isogeometric fluid – structure interaction: theory, algorithms, and computations, Comput Mech, 43, 3-37 (2008) · Zbl 1169.74015
[32] Takizawa, K.; Bazilevs, Y.; Tezduyar, T. E., Space – time and ALE-VMS techniques for patient-specific cardiovascular fluid – structure interaction modeling, Arch Comput Methods Eng, 19, 171-225 (2012) · Zbl 1354.92023
[33] Bazilevs, Y.; Hsu, M.-C.; Takizawa, K.; Tezduyar, T. E., ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid – structure interaction, Math Models Methods Appl Sci, 22, supp02, 1230002 (2012) · Zbl 1404.76187
[34] Bazilevs, Y.; Takizawa, K.; Tezduyar, T. E., Computational fluid – structure interaction: methods and applications (2013), Wiley · Zbl 1286.74001
[35] Bazilevs, Y.; Takizawa, K.; Tezduyar, T. E., Challenges and directions in computational fluid – structure interaction, Math Models Methods Appl Sci, 23, 215-221 (2013) · Zbl 1261.76025
[36] Bazilevs, Y.; Takizawa, K.; Tezduyar, T. E., New directions and challenging computations in fluid dynamics modeling with stabilized and multiscale methods, Math Models Methods Appl Sci, 25, 2217-2226 (2015) · Zbl 1329.76007
[37] Kalro, V.; Tezduyar, T. E., A parallel 3D computational method for fluid – structure interactions in parachute systems, Comput Methods Appl Mech Eng, 190, 321-332 (2000) · Zbl 0993.76044
[38] Bazilevs, Y.; Hughes, T. J.R., Weak imposition of Dirichlet boundary conditions in fluid mechanics, Comput Fluids, 36, 12-26 (2007) · Zbl 1115.76040
[39] Bazilevs, Y.; Michler, C.; Calo, V. M.; Hughes, T. J.R., Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes, Comput Methods Appl Mech Eng, 199, 780-790 (2010) · Zbl 1406.76023
[40] Hsu, M.-C.; Akkerman, I.; Bazilevs, Y., Wind turbine aerodynamics using ALE-VMS: validation and role of weakly enforced boundary conditions, Comput Mech, 50, 499-511 (2012)
[41] Bazilevs, Y.; Hughes, T. J.R., NURBS-based isogeometric analysis for the computation of flows about rotating components, Comput Mech, 43, 143-150 (2008) · Zbl 1171.76043
[42] Hsu, M.-C.; Bazilevs, Y., Fluid – structure interaction modeling of wind turbines: simulating the full machine, Comput Mech, 50, 821-833 (2012) · Zbl 1311.74038
[43] Moghadam, M. E.; Bazilevs, Y.; Hsia, T.-Y.; Vignon-Clementel, I. E.; Marsden, A. L.; Modeling of Congenital Hearts Alliance (MOCHA), A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations, Comput Mech, 48, 277-291 (2011) · Zbl 1398.76102
[44] Bazilevs, Y.; Hsu, M.-C.; Kiendl, J.; Wüchner, R.; Bletzinger, K.-U., 3D simulation of wind turbine rotors at full scale. Part II: fluid – structure interaction modeling with composite blades, Int J Numer Methods Fluids, 65, 236-253 (2011) · Zbl 1428.76087
[45] Hsu, M.-C.; Akkerman, I.; Bazilevs, Y., High-performance computing of wind turbine aerodynamics using isogeometric analysis, Comput Fluids, 49, 93-100 (2011) · Zbl 1271.76276
[46] Bazilevs, Y.; Hsu, M.-C.; Scott, M. A., Isogeometric fluid – structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines, Comput Methods Appl Mech Eng, 249-252, 28-41 (2012) · Zbl 1348.74094
[47] Hsu, M.-C.; Akkerman, I.; Bazilevs, Y., Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment, Wind Energy, 17, 461-481 (2014)
[48] Korobenko, A.; Hsu, M.-C.; Akkerman, I.; Tippmann, J.; Bazilevs, Y., Structural mechanics modeling and FSI simulation of wind turbines, Math Models Methods Appl Sci, 23, 249-272 (2013) · Zbl 1261.74011
[49] Bazilevs, Y.; Korobenko, A.; Deng, X.; Yan, J., Novel structural modeling and mesh moving techniques for advanced FSI simulation of wind turbines, Int J Numer Methods Eng, 102, 766-783 (2015) · Zbl 1352.76033
[50] Korobenko, A.; Hsu, M.-C.; Akkerman, I.; Bazilevs, Y., Aerodynamic simulation of vertical-axis wind turbines, J Appl Mech, 81, 021011 (2013)
[51] Bazilevs, Y.; Korobenko, A.; Deng, X.; Yan, J.; Kinzel, M.; Dabiri, J. O., FSI modeling of vertical-axis wind turbines, J Appl Mech, 81, 081006 (2014)
[52] Yan, J.; Korobenko, A.; Deng, X.; Bazilevs, Y., Computational free-surface fluid – structure interaction with application to floating offshore wind turbines, Comput Fluids, 141, 155-174 (2016) · Zbl 1390.76376
[53] Bazilevs, Y.; Korobenko, A.; Yan, J.; Pal, A.; Gohari, S. M.I.; Sarkar, S., ALE-VMS formulation for stratified turbulent incompressible flows with applications, Math Models Methods Appl Sci, 25, 2349-2375 (2015) · Zbl 1329.76050
[54] Bazilevs, Y.; Korobenko, A.; Deng, X.; Yan, J., FSI modeling for fatigue-damage prediction in full-scale wind-turbine blades, J Appl Mech, 83, 6, 061010 (2016)
[55] Bazilevs, Y.; Calo, V. M.; Zhang, Y.; Hughes, T. J.R., Isogeometric fluid – structure interaction analysis with applications to arterial blood flow, Comput Mech, 38, 310-322 (2006) · Zbl 1161.74020
[56] Bazilevs, Y.; Gohean, J. R.; Hughes, T. J.R.; Moser, R. D.; Zhang, Y., Patient-specific isogeometric fluid – structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device, Comput Methods Appl Mech Eng, 198, 3534-3550 (2009) · Zbl 1229.74096
[57] Bazilevs, Y.; Hsu, M.-C.; Benson, D.; Sankaran, S.; Marsden, A., Computational fluid – structure interaction: methods and application to a total cavopulmonary connection, Comput Mech, 45, 77-89 (2009) · Zbl 1398.92056
[58] Bazilevs, Y.; Hsu, M.-C.; Zhang, Y.; Wang, W.; Liang, X.; Kvamsdal, T., A fully-coupled fluid – structure interaction simulation of cerebral aneurysms, Comput Mech, 46, 3-16 (2010) · Zbl 1301.92014
[59] Bazilevs, Y.; Hsu, M.-C.; Zhang, Y.; Wang, W.; Kvamsdal, T.; Hentschel, S., Computational fluid – structure interaction: methods and application to cerebral aneurysms, Biomech Model Mechanobiol, 9, 481-498 (2010)
[60] Hsu, M.-C.; Bazilevs, Y., Blood vessel tissue prestress modeling for vascular fluid – structure interaction simulations, Finite Elem Anal Des, 47, 593-599 (2011)
[61] Long, C. C.; Marsden, A. L.; Bazilevs, Y., Fluid – structure interaction simulation of pulsatile ventricular assist devices, Comput Mech, 52, 971-981 (2013) · Zbl 1388.74039
[62] Long, C. C.; Esmaily-Moghadam, M.; Marsden, A. L.; Bazilevs, Y., Computation of residence time in the simulation of pulsatile ventricular assist devices, Comput Mech, 54, 911-919 (2014) · Zbl 1311.74041
[63] Long, C. C.; Marsden, A. L.; Bazilevs, Y., Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk, Comput Mech, 54, 921-932 (2014) · Zbl 1314.74056
[64] Hsu, M.-C.; Kamensky, D.; Bazilevs, Y.; Sacks, M. S.; Hughes, T. J.R., Fluid – structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation, Comput Mech, 54, 1055-1071 (2014) · Zbl 1311.74039
[65] Hsu, M.-C.; Kamensky, D.; Xu, F.; Kiendl, J.; Wang, C.; Wu, M. C.H., Dynamic and fluid – structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models, Comput Mech, 55, 1211-1225 (2015) · Zbl 1325.74048
[66] Kamensky, D.; Hsu, M.-C.; Schillinger, D.; Evans, J. A.; Aggarwal, A.; Bazilevs, Y., An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves, Comput Methods Appl Mech Eng, 284, 1005-1053 (2015) · Zbl 1423.74273
[67] Akkerman, I.; Bazilevs, Y.; Benson, D. J.; Farthing, M. W.; Kees, C. E., Free-surface flow and fluid – object interaction modeling with emphasis on ship hydrodynamics, J Appl Mech, 79, 010905 (2012)
[68] Akkerman, I.; Dunaway, J.; Kvandal, J.; Spinks, J.; Bazilevs, Y., Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS, Comput Mech, 50, 719-727 (2012)
[69] Wang, C.; Wu, M. C.H.; Xu, F.; Hsu, M.-C.; Bazilevs, Y., Modeling of a hydraulic arresting gear using fluid – structure interaction and isogeometric analysis, Comput Fluids, 142, 3-14 (2017) · Zbl 1390.76013
[70] Wu, M. C.H.; Kamensky, D.; Wang, C.; Herrema, A. J.; Xu, F.; Pigazzini, M. S., Optimizing fluid – structure interaction systems with immersogeometric analysis and surrogate modeling: application to a hydraulic arresting gear, Comput Methods Appl Mech Eng (2017) · Zbl 1439.74117
[71] Yan, J.; Deng, X.; Korobenko, A.; Bazilevs, Y., Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines, Comput Fluids, 158, 157-166 (2017) · Zbl 1390.86027
[72] Augier, B.; Yan, J.; Korobenko, A.; Czarnowski, J.; Ketterman, G.; Bazilevs, Y., Experimental and numerical FSI study of compliant hydrofoils, Comput Mech, 55, 1079-1090 (2015)
[73] Yan, J.; Augier, B.; Korobenko, A.; Czarnowski, J.; Ketterman, G.; Bazilevs, Y., FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration, Comput Fluids, 141, 201-211 (2016) · Zbl 1390.76375
[74] Takizawa, K.; Tezduyar, T. E., Computational methods for parachute fluid – structure interactions, Arch Comput Methods Eng, 19, 125-169 (2012) · Zbl 1354.76113
[75] Takizawa, K.; Fritze, M.; Montes, D.; Spielman, T.; Tezduyar, T. E., Fluid – structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity, Comput Mech, 50, 835-854 (2012)
[76] Takizawa, K.; Tezduyar, T. E.; Boben, J.; Kostov, N.; Boswell, C.; Buscher, A., Fluid – structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity, Comput Mech, 52, 1351-1364 (2013) · Zbl 1398.74097
[77] Takizawa, K.; Tezduyar, T. E.; Boswell, C.; Tsutsui, Y.; Montel, K., Special methods for aerodynamic-moment calculations from parachute FSI modeling, Comput Mech, 55, 1059-1069 (2015)
[78] Takizawa, K.; Montes, D.; Fritze, M.; McIntyre, S.; Boben, J.; Tezduyar, T. E., Methods for FSI modeling of spacecraft parachute dynamics and cover separation, Math Models Methods Appl Sci, 23, 307-338 (2013) · Zbl 1261.76013
[79] Takizawa, K.; Tezduyar, T. E.; Boswell, C.; Kolesar, R.; Montel, K., FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes, Comput Mech, 54, 1203-1220 (2014)
[80] Takizawa, K.; Tezduyar, T. E.; Kolesar, R.; Boswell, C.; Kanai, T.; Montel, K., Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes, Comput Mech, 54, 1461-1476 (2014) · Zbl 1309.74025
[81] Takizawa, K.; Tezduyar, T. E.; Kolesar, R., FSI Modeling of the Orion spacecraft drogue parachutes, Comput Mech, 55, 1167-1179 (2015) · Zbl 1325.74169
[82] Takizawa, K.; Henicke, B.; Tezduyar, T. E.; Hsu, M.-C.; Bazilevs, Y., Stabilized space – time computation of wind-turbine rotor aerodynamics, Comput Mech, 48, 333-344 (2011) · Zbl 1398.76127
[83] Takizawa, K.; Henicke, B.; Montes, D.; Tezduyar, T. E.; Hsu, M.-C.; Bazilevs, Y., Numerical-performance studies for the stabilized space – time computation of wind-turbine rotor aerodynamics, Comput Mech, 48, 647-657 (2011) · Zbl 1334.74032
[84] Takizawa, K.; Bazilevs, Y.; Tezduyar, T. E.; Hsu, M.-C.; Øiseth, O.; Mathisen, K. M., Engineering analysis and design with ALE-VMS and space – time methods, Arch Comput Methods Eng, 21, 481-508 (2014) · Zbl 1348.74104
[85] Takizawa, K., Computational engineering analysis with the new-generation space – time methods, Comput Mech, 54, 193-211 (2014)
[86] Takizawa, K.; Henicke, B.; Puntel, A.; Kostov, N.; Tezduyar, T. E., Computer modeling techniques for flapping-wing aerodynamics of a locust, Comput Fluids, 85, 125-134 (2013) · Zbl 1290.76170
[87] Takizawa, K.; Tezduyar, T. E.; Kostov, N., Sequentially-coupled space – time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV, Comput Mech, 54, 213-233 (2014)
[88] Takizawa, K.; Tezduyar, T. E.; Buscher, A.; Asada, S., Space – time interface-tracking with topology change (ST-TC), Comput Mech, 54, 955-971 (2014) · Zbl 1311.74045
[89] Takizawa, K.; Tezduyar, T. E.; Buscher, A., Space – time computational analysis of MAV flapping-wing aerodynamics with wing clapping, Comput Mech, 55, 1131-1141 (2015)
[90] Takizawa, K.; Bazilevs, Y.; Tezduyar, T. E.; Long, C. C.; Marsden, A. L.; Schjodt, K., ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling, Math Models Methods Appl Sci, 24, 2437-2486 (2014) · Zbl 1296.76113
[91] Takizawa, K.; Schjodt, K.; Puntel, A.; Kostov, N.; Tezduyar, T. E., Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent, Comput Mech, 50, 675-686 (2012) · Zbl 1311.76157
[92] Takizawa, K.; Schjodt, K.; Puntel, A.; Kostov, N.; Tezduyar, T. E., Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms, Comput Mech, 51, 1061-1073 (2013) · Zbl 1366.76106
[93] Suito, H.; Takizawa, K.; Huynh, V. Q.H.; Sze, D.; Ueda, T., FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta, Comput Mech, 54, 1035-1045 (2014) · Zbl 1311.74044
[94] Takizawa, K.; Tezduyar, T. E.; Uchikawa, H.; Terahara, T.; Sasaki, T.; Shiozaki, K., Aorta flow analysis and heart valve flow and structure analysis (2018)
[95] Takizawa, K.; Tezduyar, T. E.; Buscher, A.; Asada, S., Space – time fluid mechanics computation of heart valve models, Comput Mech, 54, 973-986 (2014) · Zbl 1311.74083
[96] Takizawa, K.; Tezduyar, T. E.; Terahara, T.; Sasaki, T., Heart valve flow computation with the Space-Time Slip Interface Topology Change (ST-SI-TC) method and isogeometric analysis (IGA), (Wriggers, P.; Lenarz, T., Biomedical technology: modeling, experiments and simulation. Biomedical technology: modeling, experiments and simulation, Lecture notes in applied and computational mechanics (2018), Springer), 77-99
[97] Takizawa, K.; Tezduyar, T. E.; Terahara, T.; Sasaki, T., Heart valve flow computation with the integrated Space-Time VMS, Slip Interface, Topology Change and Isogeometric Discretization methods, Comput Fluids, 158, 176-188 (2017) · Zbl 1390.76944
[98] Takizawa, K.; Montes, D.; McIntyre, S.; Tezduyar, T. E., Space – time VMS methods for modeling of incompressible flows at high Reynolds numbers, Math Models Methods Appl Sci, 23, 223-248 (2013) · Zbl 1261.76037
[99] Takizawa, K.; Tezduyar, T. E.; Hattori, H., Computational analysis of flow-driven string dynamics in turbomachinery, Comput Fluids, 142, 109-117 (2017) · Zbl 1390.76011
[100] Takizawa, K.; Tezduyar, T. E.; Asada, S.; Kuraishi, T., Space – time method for flow computations with slip interfaces and topology changes (ST-SI-TC), Comput Fluids, 141, 124-134 (2016) · Zbl 1390.76358
[101] Kuraishi T, Takizawa K, Tezduyar T.E. Space – time computational analysis of tire aerodynamics with actual geometry, road contact and tire deformation; 2018. To appear in a special volume to be published by Springer.; Kuraishi T, Takizawa K, Tezduyar T.E. Space – time computational analysis of tire aerodynamics with actual geometry, road contact and tire deformation; 2018. To appear in a special volume to be published by Springer.
[102] Takizawa, K.; Tezduyar, T. E.; Terahara, T., Ram-air parachute structural and fluid mechanics computations with the space – time isogeometric analysis (ST-IGA), Comput Fluids, 141, 191-200 (2016) · Zbl 1390.76359
[103] Takizawa, K.; Tezduyar, T. E.; Kanai, T., Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity, Math Models Methods Appl Sci, 27, 771-806 (2017) · Zbl 1361.76017
[104] Hughes, T. J.R.; Mallet, M.; Mizukami, A., A new finite element formulation for computational fluid dynamics: II. Beyond SUPG, Comput Methods Appl Mech Eng, 54, 341-355 (1986) · Zbl 0622.76074
[105] Tezduyar, T. E.; Park, Y. J., Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations, Comput Methods Appl Mech Eng, 59, 307-325 (1986) · Zbl 0593.76096
[106] Tezduyar, T. E.; Hughes, T. J.R., Development of time-accurate finite element techniques for first-order hyperbolic systems with particular emphasis on the compressible Euler equations, NASA Technical Report NASA-CR-204772 (1982), NASA
[107] Tezduyar, T. E.; Hughes, T. J.R., Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations, Proceedings of AIAA 21st aerospace sciences meeting. AIAA paper 83-0125, Reno, Nevada (1983)
[108] Hughes, T. J.R.; Tezduyar, T. E., Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations, Comput Methods Appl Mech Eng, 45, 217-284 (1984) · Zbl 0542.76093
[109] Hughes, T. J.R.; Franca, L. P.; Mallet, M., A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multi-dimensional advective-diffusive systems, Comput Methods Appl Mech Eng, 63, 97-112 (1987) · Zbl 0635.76066
[110] Le Beau, G. J.; Tezduyar, T. E., Finite element computation of compressible flows with the SUPG formulation, Advances in finite element analysis in fluid dynamics, FED-Vol.123, 21-27 (1991), ASME: ASME New York
[111] Le Beau, G. J.; Ray, S. E.; Aliabadi, S. K.; Tezduyar, T. E., SUPG finite element computation of compressible flows with the entropy and conservation variables formulations, Comput Methods Appl Mech Eng, 104, 397-422 (1993) · Zbl 0772.76037
[112] Tezduyar, T. E.; Aliabadi, S. K.; Behr, M.; Mittal, S., Massively parallel finite element simulation of compressible and incompressible flows, Comput Methods Appl Mech Eng, 119, 157-177 (1994) · Zbl 0848.76040
[113] Takizawa, K.; Tezduyar, T. E., Space – time computation techniques with continuous representation in time (ST-C), Comput Mech, 53, 91-99 (2014)
[114] Hughes, T. J.R.; Brooks, A. N., A multi-dimensional upwind scheme with no crosswind diffusion, (Hughes, T. J.R., Finite element methods for convection dominated flows, AMD-Vol.34 (1979), ASME: ASME New York), 19-35 · Zbl 0423.76067
[115] Akin, J. E.; Tezduyar, T.; Ungor, M.; Mittal, S., Stabilization parameters and Smagorinsky turbulence model, J Appl Mech, 70, 2-9 (2003) · Zbl 1110.74311
[116] Akin, J. E.; Tezduyar, T. E., Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements, Comput Methods Appl Mech Eng, 193, 1909-1922 (2004) · Zbl 1067.76557
[117] Franca, L. P.; Frey, S. L.; Hughes, T. J.R., Stabilized finite element methods: i. Application to the advective-diffusive model, Comput Methods Appl Mech Eng, 95, 253-276 (1992) · Zbl 0759.76040
[118] Tezduyar, T. E.; Osawa, Y., Finite element stabilization parameters computed from element matrices and vectors, Comput Methods Appl Mech Eng, 190, 411-430 (2000) · Zbl 0973.76057
[119] Hsu, M.-C.; Bazilevs, Y.; Calo, V. M.; Tezduyar, T. E.; Hughes, T. J.R., Improving stability of stabilized and multiscale formulations in flow simulations at small time steps, Comput Methods Appl Mech Eng, 199, 828-840 (2010) · Zbl 1406.76028
[120] Tezduyar, T. E., Adaptive determination of the finite element stabilization parameters, Proceedings of the ECCOMAS Computational Fluid Dynamics Conference 2001 (CD-ROM), Swansea, Wales, United Kingdom (2001)
[121] Tezduyar, T. E., Finite element methods for fluid dynamics with moving boundaries and interfaces, (Stein, E.; Borst, R. D.; Hughes, T. J.R., Encyclopedia of computational mechanics, chapter 17, volume 3: fluids (2004), Wiley)
[122] Tezduyar, T. E., Determination of the stabilization and shock-capturing parameters in SUPG formulation of compressible flows, Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2004 (CD-ROM), Jyvaskyla, Finland (2004)
[123] Tezduyar, T. E., Finite elements in fluids: stabilized formulations and moving boundaries and interfaces, Comput Fluids, 36, 191-206 (2007) · Zbl 1177.76202
[124] Rispoli, F.; Corsini, A.; Tezduyar, T. E., Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD), Comput Fluids, 36, 121-126 (2007) · Zbl 1181.76098
[125] Tezduyar, T. E.; Senga, M., Stabilization and shock-capturing parameters in SUPG formulation of compressible flows, Comput Methods Appl Mech Eng, 195, 1621-1632 (2006) · Zbl 1122.76061
[126] Tezduyar, T. E.; Senga, M., SUPG finite element computation of inviscid supersonic flows with YZ \(β\) shock-capturing, Comput Fluids, 36, 147-159 (2007) · Zbl 1127.76029
[127] Tezduyar, T. E.; Senga, M.; Vicker, D., Computation of inviscid supersonic flows around cylinders and spheres with the SUPG formulation and YZ \(β\) shock-capturing, Comput Mech, 38, 469-481 (2006) · Zbl 1176.76077
[128] Takizawa, K.; Tezduyar, T. E.; Otoguro, Y., Stabilization and discontinuity-capturing parameters for space – time flow computations with finite element and isogeometric discretizations, Comput Mech, April (2018) · Zbl 1462.76128
[129] Tezduyar, T. E.; Ganjoo, D. K., Petrov-Galerkin formulations with weighting functions dependent upon spatial and temporal discretization: Applications to transient convection-diffusion problems, Comput Methods Appl Mech Eng, 59, 49-71 (1986) · Zbl 0604.76077
[130] Tezduyar, T. E.; Sathe, S., Enhanced-discretization selective stabilization procedure (EDSSP), Comput Mech, 38, 456-468 (2006) · Zbl 1187.76712
[131] Corsini, A.; Rispoli, F.; Santoriello, A.; Tezduyar, T. E., Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation, Comput Mech, 38, 356-364 (2006) · Zbl 1177.76192
[132] Tezduyar, T. E.; Ramakrishnan, S.; Sathe, S., Stabilized formulations for incompressible flows with thermal coupling, Int J Numer Methods Fluids, 57, 1189-1209 (2008) · Zbl 1140.76024
[133] Rispoli, F.; Saavedra, R.; Corsini, A.; Tezduyar, T. E., Computation of inviscid compressible flows with the V-SGS stabilization and YZ \(β\) shock-capturing, Int J Numer Methods Fluids, 54, 695-706 (2007) · Zbl 1207.76104
[134] Bazilevs, Y.; Calo, V. M.; Tezduyar, T. E.; Hughes, T. J.R., YZ \(β\) discontinuity-capturing for advection-dominated processes with application to arterial drug delivery, Int J Numer Methods Fluids, 54, 593-608 (2007) · Zbl 1207.76049
[135] Corsini, A.; Menichini, C.; Rispoli, F.; Santoriello, A.; Tezduyar, T. E., A multiscale finite element formulation with discontinuity capturing for turbulence models with dominant reactionlike terms, J Appl Mech, 76, 021211 (2009)
[136] Rispoli, F.; Saavedra, R.; Menichini, F.; Tezduyar, T. E., Computation of inviscid supersonic flows around cylinders and spheres with the V-SGS stabilization and YZ \(β\) shock-capturing, J Appl Mech, 76, 021209 (2009)
[137] Corsini, A.; Iossa, C.; Rispoli, F.; Tezduyar, T. E., A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors, Comput Mech, 46, 159-167 (2010) · Zbl 1301.76045
[138] Corsini, A.; Rispoli, F.; Tezduyar, T. E., Stabilized finite element computation of NOx emission in aero-engine combustors, Int J Numer Methods Fluids, 65, 254-270 (2011) · Zbl 1426.76240
[139] Corsini, A.; Rispoli, F.; Tezduyar, T. E., Computer modeling of wave-energy air turbines with the SUPG/PSPG formulation and discontinuity-capturing technique, J Appl Mech, 79, 010910 (2012)
[140] Kler, P. A.; Dalcin, L. D.; Paz, R. R.; Tezduyar, T. E., SUPG and discontinuity-capturing methods for coupled fluid mechanics and electrochemical transport problems, Comput Mech, 51, 171-185 (2013) · Zbl 1312.76062
[141] Rispoli, F.; Delibra, G.; Venturini, P.; Corsini, A.; Saavedra, R.; Tezduyar, T. E., Particle tracking and particle – shock interaction in compressible-flow computations with the V-SGS stabilization and YZ \(β\) shock-capturing, Comput Mech, 55, 1201-1209 (2015) · Zbl 1325.76121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.