×

On epsilon-stability in optimization. (English) Zbl 1411.90271

Summary: We study stability of optimization problems in the separated locally convex topological vector space setting. We use the concepts of \(\epsilon\)-stability, dual \(\epsilon\)-stability, and \(\epsilon\)-duality gap, and establish geometric characterizations of these notions by an epigraphical analysis approach. Under a constraint qualification involving quasi relative interiors, we obtain some criteria for \(\epsilon\)-stability and \(\epsilon\)-duality gap, which are shown to be useful for obtaining relevant stability and duality theorems in infinite dimensional optimization. We apply our approach to study cone constrained problems, Fenchel duality, conjugate duality, and the subdifferentiability of functions associated with epigraphical type sets. Several duality and stability results of recent publications can be deduced from and sometimes improved by a geometric characterization of \(\epsilon\)-stability in a unifying way.

MSC:

90C26 Nonconvex programming, global optimization
90C30 Nonlinear programming
49N15 Duality theory (optimization)
90C31 Sensitivity, stability, parametric optimization
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Attouch, H., Brezis, H.: Duality for the sum of convex functions in general Banach spaces. In: Barroso, J.A. (ed.) Aspect of Mathematics and Its Applications. North Holland Mathematical Library, vol. 34, pp. 125-133. Elsevier, North-Holland (1986) · Zbl 0642.46004
[2] Attouch, H., Wets, R.J.-B., et al.: Epigraphical analysis. In: Attouch, H. (ed.) Analyse Non Lineaire, pp 73-100. Gauthier-Villars, Paris (1989) · Zbl 0676.49003
[3] Barbu, V., Precupanu, T.: Convexity and Optimization in Banach Spaces. Revised edition. Translated from the Romanian. Editura Academiei, Bucharest. Sijthoff and Noordhoff International Publishers, Alphen aan den Rijn (1978) · Zbl 0379.49010
[4] Boncea, H.-V., Grad, S.-M.: Characterizations of 𝜖-duality gap statements for composed optimization problems. Nonlinear Anal. 92, 96-107 (2013) · Zbl 1308.49024 · doi:10.1016/j.na.2013.07.004
[5] Borwein, J.M., Burachik, R.S., Yao, L.: Conditions for zero duality gap in convex programming. J. Nonlinear Convex Anal. 15, 167-190 (2014) · Zbl 1301.49035
[6] Borwein, J.M., Lewis, A.S.: Partially finite convex programming, part I: quasi relative interiors and duality theory. Math. Program. 57, 15-48 (1992) · Zbl 0778.90049 · doi:10.1007/BF01581072
[7] Boţ, R.I.: Conjugate Duality in Convex Optimization. Springer, Berlin (2010) · Zbl 1190.90002
[8] Boţ, R.I., Csetnek, E.R.: Regualarity conditions via generalized interiority notions in convex optimizations: New achievements and their relation to some classical statements. Optimization 61, 35-65 (2012) · Zbl 1246.46062 · doi:10.1080/02331934.2010.505649
[9] Boţ, R.I., Csetnek, E.R., Moldovan, A.: Revisiting some duality theorems via the quasirelative interior in convex optimization. J. Optim. Theory Appl. 139, 67-84 (2008) · Zbl 1189.90117 · doi:10.1007/s10957-008-9412-4
[10] Boţ, R. I., Csetnek, E.R., Wanka, G.: Sequential optimality conditions in convex programming via perturbation approach. J. Convex Anal. 15, 149-164 (2008) · Zbl 1144.90018
[11] Boţ, R.I., Csetnek, E.R., Wanka, G.: Regularity conditions via quasi-relative interior in convex programming. SIAM J. Optim. 19, 217-233 (2008) · Zbl 1190.90119 · doi:10.1137/07068432X
[12] Boţ, R.I., Wanka, G.: A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces. Nonlinear Anal. 64, 2787-2804 (2006) · Zbl 1087.49026 · doi:10.1016/j.na.2005.09.017
[13] Cammaroto, F., Di Bella, B.: Separation theorem based on the quasirelative interior and application to duality theory. J. Optim. Theory Appl. 125, 223-229 (2005) · Zbl 1090.90155 · doi:10.1007/s10957-004-1724-4
[14] Champion, T.: Duality gap in convex programming. Math. Program. 99, 487-498 (2004) · Zbl 1084.90032 · doi:10.1007/s10107-003-0461-z
[15] Daniele, P., Giuffrè, S., Idone, G., Maugeri, A.: Infinite dimensional duality and applications. Math. Ann. 339, 221-239 (2007) · Zbl 1356.49064 · doi:10.1007/s00208-007-0118-y
[16] Dinh, N., López, M.A., Volle, M.: Functional inequalities in the absence of convexity and lower semicontinuity with applications to optimization. SIAM J. Optim. 20, 2540-2559 (2010) · Zbl 1220.90162 · doi:10.1137/09077552X
[17] Dinh, N., Goberna, M.A., López, M.A., Volle, M.: Convex inequalities without constraint qualification nor closedness condition, and their applications in optimization. Set-Valued Var. Anal. 18, 423-445 (2010) · Zbl 1231.90381 · doi:10.1007/s11228-010-0166-4
[18] Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. Translated from the French. Studies in Mathematics and Its Applications, vol. 1. North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York (1976) · Zbl 0322.90046
[19] Ernst, E., Volle, M.: Zero duality gap and attainment with possibly non-convex data. J. Convex Anal. 23, 615-629 (2016) · Zbl 1344.49041
[20] Fenchel, W.: A remark on convex sets and polarity. Comm. Sem. Math. Univ. Lund, Tome supplémentaire, pp. 82-89 (1952) · Zbl 0048.16502
[21] Flores-Bazán, F., Mastroeni, G.: Strong duality in cone constrained nonconvex optimization. SIAM J. Optim. 23, 153-169 (2013) · Zbl 1285.90077 · doi:10.1137/120861400
[22] Flores-Bazán, F., Flores-Bazán, F., Vera, C.: A complete characterization of strong duality in nonconvex optimization with a single constraint. J. Glob. Optim. 53, 185-201 (2012) · Zbl 1284.90076 · doi:10.1007/s10898-011-9673-6
[23] Giannessi, F., Mastroeni, G.: Separation of sets and Wolf duality. J. Glob. Optim. 42, 401-412 (2008) · Zbl 1172.90382 · doi:10.1007/s10898-008-9301-2
[24] Grad, A.: Quasi-relative interior-type constraint qualifications ensuring strong Lagrange duality for optimization problems with cone and affine constraints. J. Math. Anal. Appl. 361, 86-95 (2010) · Zbl 1175.49031 · doi:10.1016/j.jmaa.2009.09.006
[25] Grad, S.-M.: Closedness type regularity conditions in convex optimization and beyond. Front. Appl. Math. Stat. (2016). https://doi.org/https://doi.org/10.3389/fams.2016.00014 · Zbl 1301.49035
[26] Grad, S.-M.: Vector Optimization and Monotone Operators via Convex Duality: Recent Advances. Springer, Cham (2014) · Zbl 1337.90080
[27] Goberna, M.A., Ridolfi, A.B., Vera de Serio, V.N.: Stability of the duality gap in linear optimization. Set-Valued Var. Anal. 25, 617-636 (2017) · Zbl 1373.90073 · doi:10.1007/s11228-017-0405-z
[28] Hiriart-Urruty, J.-B., López, M.A., Volle, M.: The 𝜖-strategy in variational analysis: illustration with the closed convexification of a function. Rev. Mat. Iberoam 27, 449-474 (2011) · Zbl 1229.90265 · doi:10.4171/RMI/643
[29] Hiriart-Urruty, J.-B., Moussaoui, M., Seeger, A., Volle, M.: Subdifferential calculus without qualification conditions, using approximate subdifferentials: a survey. Nonlinear Anal. 24, 1727-1754 (1995) · Zbl 0846.49004 · doi:10.1016/0362-546X(94)00221-3
[30] Jeyakumar, V., Wolkovicz, H.: Zero duality gap in infinite-dimensional programming. J. Optim. Theory Appl. 67, 87-108 (1990) · Zbl 0687.90077 · doi:10.1007/BF00939737
[31] Jeyakumar, V., Li, G.Y.: Stable zero duality gaps in convex programming: complete dual characterisations with applications to semidefinite programs. J. Math. Anal. Appl. 360, 156-167 (2009) · Zbl 1208.90134 · doi:10.1016/j.jmaa.2009.06.043
[32] Joly, J.-L., Laurent, P.-J.: Stability and duality in convex minimization problems. M.R.C. Techn. Report 1090, Univ. of Wisc. (1970); RIRO, pp. 3-42 (1971) · Zbl 0261.90051
[33] Moussaoui, M., Volle, M.: Quasicontinuity and united functions in convex duality theory. Commun. Appl. Nonlinear Anal. 4, 73-89 (1997) · Zbl 0894.90120
[34] Rockafellar, R.T.: Conjugate Duality and Optimization. SIAM, Philadelpia (1974) · Zbl 0296.90036 · doi:10.1137/1.9781611970524
[35] Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998) · Zbl 0888.49001 · doi:10.1007/978-3-642-02431-3
[36] Vicente-Pérez, J., Volle, M.: Even convexity, subdifferentiability, and Γ-regularization in general topological vector spaces. J. Math. Anal. Appl. 429, 956-968 (2015) · Zbl 1323.90078 · doi:10.1016/j.jmaa.2015.04.051
[37] Zălinescu, C.: A note on d-stability of convex programs and limiting Lagrangians. Math. Program. 53, 267-277 (1992) · Zbl 0749.90059 · doi:10.1007/BF01585706
[38] Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002) · Zbl 1023.46003 · doi:10.1142/5021
[39] Zălinescu, C.: On three open problems related to quasi relative interior. J. Convex Anal. 22, 641-645 (2015) · Zbl 1338.46010
[40] Zălinescu, C.: On the use of the quasi-relative interior in optimization. Optimization 64, 1795-1823 (2015) · Zbl 1337.49060 · doi:10.1080/02331934.2015.1032284
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.