Reflective evolution under strategic uncertainty. (English) Zbl 1411.91085

Summary: We consider population dynamics of agents who can both play the cooperative strategy and the competition strategy but ignore whether the game to come will be cooperative or noncooperative. For that purpose, we propose an evolutionary model, built upon replicator(-mutator) dynamics under strategic uncertainty, and study the impact of update decay. In replicator-mutator dynamics, we find that the strategy replication under certain mutation in an unstructured population is equivalent to a negative strategy replication in a structured population. Likewise, in replicator-mutator dynamics with decay, the strategy replication under certain mutation in a structured population is equivalent to a negative replication issued from an unstructured population. Our theoretical statements are supported by numerical simulations performed on bifurcation diagrams.


91A22 Evolutionary games
92D25 Population dynamics (general)
91A06 \(n\)-person games, \(n>2\)
Full Text: DOI


[1] Allen, B.; Rosenbloom, D., Mutation rate evolution in replicator dynamics, Bull. Math. Biol., 74, 2650-2675, (2012) · Zbl 1362.92047
[2] Bach, L.; Helvik, T.; Christiansen, F., The evolution of \(N\)-player cooperation — Threshold games and ESS bifurcations, J. Theoret. Biol., 238, 426-434, (2006)
[3] Barfield, M.; Holt, R.; Gomulkiewicz, R., Evolution in stage-structured populations, Am. Nat., 177, 397-409, (2011)
[4] Bürger, R., Mathematical principles of mutation-selection models, Genetica, 102-103, 279-298, (1998)
[5] Chatterjee, K.; Zufferey, D.; Nowak, M., Evolutionary game dynamics in populations with different learners, J. Theoret. Biol., 301, 161-173, (2012) · Zbl 1397.91062
[6] Cressman, R.; Hofbauer, J.; Riedel, F., Stability of the replicator equation for a single species with a multi-dimensional continuous trait space, J. Theoret. Biol., 239, 273-288, (2006)
[7] Cressman, R.; Tao, Y., The replicator equation and other game dynamics, Proc. Natl. Acad. Sci. USA, 111, 10810-10817, (2014) · Zbl 1355.91011
[8] Dercole, F.; Rinaldi, S.; Dercole, F.; Rinaldi, S., Analysis of Evolutionary Processes: The Adaptive Dynamics Approach and Its Applications, (2008), Princeton University Press: Princeton University Press, Princeton · Zbl 1305.92001
[9] De Roos, A.; Persson, L., Unstructured Population Models: Do Population-Level Assumptions Yield General Theory? Ecological Paradigms Lost: Routes of Theory Change, (2005), Elsevier Academic Press: Elsevier Academic Press, Cambridge
[10] Donaldson-Matasci, M.; Lachmann, M.; Bergstrom, C., Phenotypic diversity as an adaptation to environmental uncertainty, Evol. Ecol. Res., 10, 493-515, (2008)
[11] Dragicevic, A., Bayesian population dynamics of spreading species, Environ. Model. Assess., 20, 17-27, (2015)
[12] Dragicevic, A., Option fund market dynamics for threshold public goods, Dyn. Gam. Appl., 7, 21-33, (2017) · Zbl 1391.91090
[13] Dyer, J.; Singh, H., The relational view: Cooperative strategy and sources of inter-organizational competitive advantage, Acad. Manag. Rev., 23, 660-679, (1998)
[14] Garcia, J.; Traulsen, A., The structure of mutations and the evolution of cooperation, PLoS One, 7, e35287-1-9, (2012)
[15] Harper, M., Inherent randomness of evolving populations, Phys. Rev. E, 89, 032709-1-10, (2014)
[16] Harsanyi, J., Games with randomly disturbed payoffs: A new rationale for mixed strategy equilibrium points, Int. J. Game Th., 2, 1-23, (1973) · Zbl 0255.90084
[17] Hauert, C.; De Monte, S.; Hofbauer, J.; Sigmund, K., Volunteering as red queen mechanism for cooperation in public goods games, Science, 296, 1129-1132, (2002)
[18] Hauert, C.; Holmes, M.; Doebeli, M., Evolutionary games and population dynamics: Maintenance of cooperation in public goods games, Proc. Roy. Soc. B, 273, 2565-2570, (2006)
[19] Hilbe, C., Local replicator dynamics: A simple link between deterministic and stochastic models of evolutionary game theory, Bull. Math. Biol., 73, 2068-2087, (2011) · Zbl 1225.92043
[20] Hinze, A.; Olson, R.; Adami, C.; Hertwig, R., Risk sensitivity as an evolutionary adaptation, Scient. Rep., 5, 8242-1-7, (2015)
[21] Hofbauer, J.; Sigmund, K., Evolutionary Games and Population Dynamics, (1998), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 0914.90287
[22] Imhof, L.; Fudenberg, D.; Nowak, M., Evolutionary cycles of cooperation and defection, Proc. Natl. Acad. Sci. USA, 102, 10797-10800, (2005)
[23] Levin, S., Complex adaptive systems: Exploring the known, the unknown and the unknownable, Bull. Amer. Math. Soc., 40, 3-19, (2002)
[24] Maynard Smith, J.; Price, G., The logic of animal conflicts, Nature, 246, 15-18, (1973) · Zbl 1369.92134
[25] Nolte, D., Introduction to Modern Dynamics, Chaos, Networks, Space and Time, (2015), Oxford University Press: Oxford University Press, Oxford · Zbl 1357.70018
[26] Noussair, C.; van Soest, D.; Stoop, J., Punishment, reward, and cooperation in a framed field experiment, Soc. Choice Welfare, 45, 537-559, (2015) · Zbl 1341.91037
[27] Nowak, M.; May, R., Evolutionary games and spatial chaos, Nature, 359, 826-829, (1992)
[28] Nowak, M.; Sigmund, K., Evolution of indirect reciprocity by image scoring, Nature, 393, 573-577, (1998)
[29] Odenbaugh, J.; Cuddington, K.; Beisner, B., Ecological Paradigms Lost: Routes of Theory Change, The ‘structure’ of population ecology: Philosophical reflections on unstructured and structured models, 63-76, (2005), Elsevier Academic Press: Elsevier Academic Press, Cambridge
[30] Page, K.; Nowak, M., Unifying evolutionary dynamics, J. Theoret. Biol., 219, 93-98, (2002)
[31] Perc, M., Coherence resonance in a spatial Prisoner’s dilemma game, New J. Phys., 8, 22-1-8, (2006)
[32] Perc, M.; Marhl, M., Evolutionary and dynamical coherence resonances in the pair approximated Prisoner’s dilemma game, New J. Phys., 8, 142-1-12, (2006)
[33] Perc, M., Transition from Gaussian to Lévy distributions of stochastic payoff variations in the spatial Prisoner’s dilemma game, Phys. Rev. E, 75, 022101-1-4, (2007)
[34] Perc, M.; Szolnoki, A., Coevolutionary games — A mini review, Biosystems, 99, 109-125, (2010)
[35] Perc, M.; Gomez-Gardenes, J.; Szolnoki, A.; Floria, L.; Moreno, Y., Evolutionary dynamics of group interactions on structured populations: A review, J. Roy. Soc. Interf., 10, 20120997-1-17, (2013)
[36] Perc, M.; Jordan, J.; Rand, D.; Wang, Z.; Boccaletti, S.; Szolnoki, A., Statistical physics of human cooperation, Phys. Rep., 687, 1-51, (2017) · Zbl 1366.80006
[37] Sanchez, A.; Gore, J., Feedback between population and evolutionary dynamics determines the fate of social microbial populations, PLoS Biol., 11, 1-9, (2013)
[38] Santos, F.; Santos, M.; Pacheco, J., Social diversity promotes the emergence of cooperation in public goods games, Nature, 454, 213-216, (2008)
[39] Sato, Y.; Crutchfield, J., Coupled replicator equations for the dynamics of learning in multiagent systems, Phys. Rev. E, 67, 015206-1-4, (2003)
[40] Shapley, L., Cores of convex games, Int. J. Game Th., 1, 11-26, (1971) · Zbl 0222.90054
[41] Smith, K.; Grimm, C.; Gannon, M., Dynamics of Competitive Strategy, (1992), Sage Publications: Sage Publications, London
[42] Szolnoki, A.; Perc, M., Conditional strategies and the evolution of cooperation in spatial public goods games, Phys. Rev. E, 85, 026104-1-7, (2012)
[43] Szolnoki, A.; Perc, M.; Szabo, G., Defense mechanisms of empathetic players in the spatial ultimatum game, Phys. Rev. Lett., 109, 078701-1-4, (2012)
[44] Szolnoki, A.; Perc, M., Correlation of positive and negative reciprocity fails to confer an evolutionary advantage: Phase transitions to elementary strategies, Phys. Rev. X, 3, 041021-1-11, (2013)
[45] Szolnoki, A.; Mobilia, M.; Jiang, L.-L.; Szczesny, B.; Rucklidge, A.; Perc, M., Cyclic dominance in evolutionary games: A review, J. Roy. Soc. Interf., 11, 20140735-1-20, (2014)
[46] Tampuu, A.; Matiisen, T.; Kodelja, D.; Kuzovkin, I.; Korjus, K.; Aru, J.; Vicente, R., Multiagent cooperation and competition with deep reinforcement learning, PLoS One, 12, e0172395-1-15, (2017)
[47] Traulsen, A.; Röhl, T.; Schuster, H., Stochastic gain in population dynamics, Phys. Rev. Lett., 93, 028701-1-4, (2004)
[48] Traulsen, A.; Semmann, D.; Sommerfeld, R.; Krambeck, H.-J.; Milinski, M., Human strategy updating in evolutionary games, Proc. Natl. Acad. Sci. USA, 107, 2962-2966, (2010)
[49] Wang, J.; Fu, F.; Wu, T.; Wang, L., Emergence of social cooperation in threshold public goods games with collective risk, Phys. Rev. E, 80, 016101-1-11, (2009)
[50] Wang, Z.; Wang, L.; Szolnoki, A.; Perc, M., Evolutionary games on multilayer networks: A colloquium, Eur. Phys. J. B, 88, 124-1-15, (2015)
[51] Wu, Y.; Chang, S.; Zhang, Z.; Deng, Z., Impact of social reward on the evolution of the cooperation behavior in complex networks, Scient. Rep., 7, 41076-1-9, (2017)
[52] Yoshimura, J.; Jansen, V., Evolution and population dynamics in stochastic environments, Res. Popul. Ecol., 38, 165-182, (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.