Köppel, Markus; Franzelin, Fabian; Kröker, Ilja; Oladyshkin, Sergey; Santin, Gabriele; Wittwar, Dominik; Barth, Andrea; Haasdonk, Bernard; Nowak, Wolfgang; Pflüger, Dirk; Rohde, Christian Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario. (English) Zbl 1414.76058 Comput. Geosci. 23, No. 2, 339-354 (2019). Summary: A variety of methods is available to quantify uncertainties arising within the modeling of flow and transport in carbon dioxide storage, but there is a lack of thorough comparisons. Usually, raw data from such storage sites can hardly be described by theoretical statistical distributions since only very limited data is available. Hence, exact information on distribution shapes for all uncertain parameters is very rare in realistic applications. We discuss and compare four different methods tested for data-driven uncertainty quantification based on a benchmark scenario of carbon dioxide storage. In the benchmark, for which we provide data and code, carbon dioxide is injected into a saline aquifer modeled by the nonlinear capillarity-free fractional flow formulation for two incompressible fluid phases, namely carbon dioxide and brine. To cover different aspects of uncertainty quantification, we incorporate various sources of uncertainty such as uncertainty of boundary conditions, of parameters in constitutive relations, and of material properties. We consider recent versions of the following non-intrusive and intrusive uncertainty quantification methods: arbitrary polynomial chaos, spatially adaptive sparse grids, kernel-based greedy interpolation, and hybrid stochastic Galerkin. The performance of each approach is demonstrated assessing expectation value and standard deviation of the carbon dioxide saturation against a reference statistic based on Monte Carlo sampling. We compare the convergence of all methods reporting on accuracy with respect to the number of model runs and resolution. Finally, we offer suggestions about the methods’ advantages and disadvantages that can guide the modeler for uncertainty quantification in carbon dioxide storage and beyond. Cited in 11 Documents MSC: 76S05 Flows in porous media; filtration; seepage 60H35 Computational methods for stochastic equations (aspects of stochastic analysis) 62P30 Applications of statistics in engineering and industry; control charts 76T10 Liquid-gas two-phase flows, bubbly flows Keywords:porous media benchmark; arbitrary polynomial chaos; spatially adaptive sparse grids; kernel greedy interpolation; hybrid stochastic Galerkin; stochastic collocation PDF BibTeX XML Cite \textit{M. Köppel} et al., Comput. Geosci. 23, No. 2, 339--354 (2019; Zbl 1414.76058) Full Text: DOI arXiv References: [1] Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1965) [2] Ahlfeld, R., Belkouchi, B., Montomoli, F.: SAMBA: sparse approximation of moment-based arbitrary polynomial chaos. J. Comput. Phys. 320, 1-16 (2016) · Zbl 1349.65417 [3] Alkhateeb, O., Ida, N.: Data-driven multi-element arbitrary polynomial chaos for uncertainty quantification in sensors. IEEE Trans Magn (2017) [4] Alpert, B.K.: A class of bases in l2 for the sparse representation of integral operators. SIAM J. Math. Anal. 24(1), 246-262 (1993) · Zbl 0764.42017 [5] Barth, A., Bürger, R., Kröker, I., Rohde, C.: Computational uncertainty quantification for a clarifier-thickener model with several random perturbations: A hybrid stochastic Galerkin approach. Comput. Chem. Eng. 89, 11-26 (2016) [6] Birkholzer, J.T., Zhou, Q., Tsang, C.F.: Large-scale impact of CO2 storage in deep saline aquifers: a sensitivity study on pressure response in stratified systems. Int. J. Greenh. Gas Control 3, 181-194 (2009) [7] Blatman, G., Sudret, B.: Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach. C. R. Mécanique 336(6), 518-523 (2008) · Zbl 1138.74046 [8] Bungartz, H.J.: Finite elements of higher order on sparse grids. Habilitation, Technische Universität München (1998) [9] Bungartz, H.J., Dirnstorfer, S.: Multivariate quadrature on adaptive sparse grids. Computing 71(1), 89-114 (2003) · Zbl 1031.65037 [10] Bürger, R., Kröker, I., Rohde, C.: A hybrid stochastic Galerkin method for uncertainty quantification applied to a conservation law modelling a clarifier-thickener unit. ZAMM Z. Angew. Math. Mech. 77(10), 793-817 (2014) · Zbl 1301.65126 [11] Celia, M., Bachu, S., Nordbotten, J., Bandilla, K.: Status of CO2 storage in deep saline aquifers with emphasis on modeling approaches and practical simulations. Water Resour. Res. 51(9), 6846-6892 (2015) [12] Class, H., Ebigbo, A., Helmig, R., Dahle, H., Nordbotten, J.N., Celia, M.A., Audigane, P., Darcis, M., Ennis-King, J., Fan, Y., Flemisch, B., Gasda, S., Jin, M., Krug, S., Labregere, D., Naderi, A., Pawar, R.J., Sbai, A., Sunil, G.T., Trenty, L., Wei, L.: Abenchmark-study on problems related to CO2 storage in geologic formations. Comput. Geosci. 13, 451-467 (2009) [13] Court, B., Bandilla, K.W., Celia, M.A., Janzen, A., Dobossy, M., Nordbotten, J.M.: Applicability of vertical-equilibrium and sharp-interface assumptions in CO2, sequestration modeling. Int. J. Greenh. Gas Control 10, 134-147 (2012) [14] De Marchi, S., Schaback, R., Wendland, H.: Near-optimal data-independent point locations for radial basis function interpolation. Adv. Comput. Math. 23(3), 317-330 (2005) · Zbl 1070.65008 [15] Dell’Oca, A., Riva, M., Guadagnini, A.: Moment-based metrics for global sensitivity analysis of hydrological systems. Hydrol. Earth Syst. Sci. 21(12), 6219-6234 (2017) [16] Ebigbo, A., Class, H., Helmig, R.: CO2 leakage through an abandoned well: problem-oriented benchmarks. Comput. Geosci. 11(2), 103-115 (2007) · Zbl 1147.86316 [17] Elsheikh, A.H., Hoteit, I., Wheeler, M.F.: Efficient Bayesian inference of subsurface flow models using nested sampling and sparse polynomial chaos surrogates. Comput. Methods in Appl. Mech. Eng. 269, 515-537 (2014) [18] Foo, J., Karniadakis, G.: Multi-element probabilistic collocation method in high dimensions. J. Comput. Phys. 229(5), 1536-1557 (2010) · Zbl 1181.65014 [19] Franzelin, F., Diehl, P., Pflüger, D.: Non-intrusive uncertainty quantification with sparse grids for multivariate peridynamic simulations. In: Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential Equations VII, Lecture Notes in Computational Science and Engineering, vol. 100, pp. 115-143. Springer International Publishing (2015) · Zbl 1343.74047 [20] Franzelin, F., Pflüger, D.: From data to uncertainty: an efficient integrated data-driven sparse grid approach to propagate uncertainty, pp. 29-49. Springer International Publishing, Cham (2016) · Zbl 1339.65018 [21] Ghanem, R.G., Spanos, P.D.: Stochastic finite elements: a spectral approach. Springer-Verlag, New York (1991) [22] Haasdonk, B., Santin, G.: Greedy kernel approximation for sparse surrogate modeling, pp. 21-45. Springer International Publishing, Berlin (2018) · Zbl 1416.65059 [23] Hansson, A., Bryngelsson, M.: Expert opinions on carbon dioxide capture and storage: a framing of uncertainties and possibilities. Energy Policy 37, 2273-2282 (2009) [24] Helton, J., Davis, F.: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab. Eng. Syst. Saf. 81(1), 23-69 (2003) [25] IPCC: Special report on carbon dioxide capture and storage, technical report, intergovernmental panel on climate change (IPCC), Prepared by Working Group III. Cambridge University Press, Cambridge (2005) [26] Isukapalli, S.S., Roy, A., Georgopoulos, P.G.: Stochastic response surface methods (SRSMs) for uncertainty propagation: Application to environmental and biological systems. Risk Anal. 18(3), 351-363 (1998) [27] Jakeman, J.D., Archibald, R., Xiu, D.: Characterization of discontinuities in high-dimensional stochastic problems on adaptive sparse grids. J. Comput. Phys. 230(10), 3977-3997 (2011) · Zbl 1218.65010 [28] Keese, A., Matthies, H.G.: Sparse quadrature as an alternative to Monte Carlo for stochastic finite element techniques. Proc. Appl. Math. Mech. 3, 493-494 (2003) · Zbl 1354.65013 [29] Kopp, A., Class, H., Helmig, H.: Investigations on CO2 storage capacity in saline aquifers - part 1: dimensional analysis of flow processes and reservoir characteristics. Int. J. Greenh. Gas Control 3, 263-276 (2009) [30] Köppel, M., Franzelin, F., Kröker, I., Oladyshkin, S., Santin, G., Wittwar, D., Barth, A., Haasdonk, B., Nowak, W., Pflüger, D., Rohde, C.: Datasets and executables of data-driven uncertainty quantification benchmark in carbon dioxide storage. https://doi.org/10.5281/zenodo.933827 · Zbl 1414.76058 [31] Köppel, M., Kröker, I., Rohde, C.: Intrusive uncertainty quantification for hyperbolic-elliptic systems governing two-phase flow in heterogeneous porous media. Comput. Geosci. 21(4), 807-832 (2017) · Zbl 1396.76058 [32] Kröker, I., Nowak, W., Rohde, C.: A stochastically and spatially adaptive parallel scheme for uncertain and nonlinear two-phase flow problems. Comput. Geosci. 18(2), 269-284 (2015) · Zbl 1396.65126 [33] Kurganov, A., Petrova, G.: Central-upwind schemes on triangular grids for hyperbolic systems of conservation laws. Numer. Meth. Part. D. E. 21(3), 536-552 (2005) · Zbl 1071.65122 [34] LeVeque, R.: Numerical methods for conservation laws. Lectures in Mathematics ETH zürich. Springer, Berlin (1992) · Zbl 0847.65053 [35] Li, H., Zhang, D.: Probabilistic collocation method for flow in porous media: comparisons with other stochastic methods. Water Resour. Res. 43, 44-48 (2007) [36] Lin, G., Tartakovsky, A.: An efficient, high-order probabilistic collocation method on sparse grids for three-dimensional flow and solute transport in randomly heterogeneous porous media. Adv. Water Res. 32(5), 712-722 (2009) [37] Ma, X., Zabaras, N.: An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. J. Comput. Phys. 228(8), 3084-3113 (2009) · Zbl 1161.65006 [38] Matthies, H.G., Keese. A.: Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comp. Meth. Appl. Mech. Engrg. 194, 1295-1331 (2005) · Zbl 1088.65002 [39] Moritz, H.: Least-squares collocation. Rev. Geophys. 16(3), 421-430 (1978) [40] Müller, S., Schaback, R.: A Newton basis for kernel spaces. J. Approx. Theory 161(2), 645-655 (2009) · Zbl 1185.41004 [41] Namhata, A., Oladyshkin, S., Dilmore, R.M., Zhang, L., Nakles, D.V.: Probabilistic assessment of above zone pressure predictions at a geologic carbon storage site. Sci. Rep. 6(39), 536 (2016) [42] Nordbotten, J., Celia, M., Bachu, M.: Injection and storage of CO2 in deep saline aquifers: analytical solution for CO2 plume evolution during injection. Transp. Porous Med. 58(3), 339-360 (2005) [43] Nordbotten, J.M., Dahle, H.K.: Impact of the capillary fringe in vertically integrated models for CO2 storage. Water Resour. Res. 47(2), W02537 (2011) [44] Oladyshkin, S., Class, H., Helmig, R., Nowak, W.: A concept for data-driven uncertainty quantification and its application to carbon dioxide storage in geological formations. Adv. Water Res. 34, 1508-1518 (2011) [45] Oladyshkin, S., Class, H., Helmig, R., Nowak, W.: An integrative approach to robust design and probabilistic risk assessment for CO2 storage in geological formations. Comput. Geosci. 15(3), 565-577 (2011) [46] Oladyshkin, S., Class, H., Nowak, W.: Bayesian updating via Bootstrap filtering combined with data-driven polynomial chaos expansions: methodology and application to history matching for carbon dioxide storage in geological formations. Comput. Geosci. 17(4), 671-687 (2013) · Zbl 1382.86022 [47] Oladyshkin, S., Nowak, W.: Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion. Reliab. Eng. Syst. Safe. 106, 179-190 (2012) [48] Oladyshkin, S., Nowak, W.: Incomplete statistical information limits the utility of high-order polynomial chaos expansions. Reliab. Eng. Syst. Saf. 169, 137-148 (2018) [49] Oladyshkin, S., Schroeder, P., Class, H., Nowak, W.: Chaos expansion based Bootstrap filter to calibrate CO2 injection models. Energy Procedia 40, 398-407 (2013) [50] Peherstorfer, B.: Model order reduction of parametrized systems with sparse grid learning techniques. Ph.D. thesis, Technical University of Munich (2013) [51] Pettersson, P., Tchelepi, H.A.: Stochastic Galerkin framework with locally reduced bases for nonlinear two-phase transport in heterogeneous formations. Comput. Method. Appl. Mech. Eng. 310, 367-387 (2016) · Zbl 1439.65129 [52] Pfander, D., Heinecke, A., Pflüger, D.: A new subspace-based algorithm for efficient spatially adaptive sparse grid regression, classification and multi-evaluation. In: Garcke, J., Pflüger, D. (eds.) Sparse Grids and Applications - Stuttgart 2014, pp. 221-246. Springer International Publishing (2016) · Zbl 1338.65025 [53] Pflüger, D.: spatially adaptive sparse grids for high-dimensional problems. Verlag dr hut (2010) · Zbl 1200.65100 [54] Pflüger, Dirk, Spatially Adaptive Refinement, 243-262 (2012), Berlin, Heidelberg [55] Poëtte, G., Després, B., Lucor, D.: Uncertainty quantification for systems of conservation laws. J. Comput. Phys. 228(7), 2443-2467 (2009) · Zbl 1161.65309 [56] Santin, G., Haasdonk, B.: Convergence rate of the data-independent P-greedy algorithm in kernel-based approximation. Dolomites Res. Notes Approx. 10, 68-78 (2017) · Zbl 1370.94401 [57] Schaback, R., Wendland, H.: Adaptive greedy techniques for approximate solution of large RBF systems. Numer. Algorithm. 24(3), 239-254 (2000) · Zbl 0957.65021 [58] Scheuerer, M., Schaback, R., Schlather, M.: Interpolation of spatial data – a stochastic or a deterministic problem?. Eur. J. Appl. Math. 24(4), 601-629 (2013) · Zbl 1426.62284 [59] Schölkopf, B., Smola, A.: Learning with Kernels. The MIT Press, Cambridge (2002) [60] Sinsbeck, M., Nowak, W.: An optimal sampling rule for non-intrusive polynomial chaos expansions of expensive models. Int. J. Uncertain. Quantif 5(3) (2015) · Zbl 1498.65174 [61] Stieltjes, T.J.: Quelques Recherches sur la Thé,orie des Quadratures dites Méchaniques. Oeuvres I, 377-396 (1884) [62] Tryoen, J., Maître, O. L., Ern, A.: Adaptive anisotropic spectral stochastic methods for uncertain scalar conservation laws. SIAM J. Sci. Comput. 34(5), A2459-A2481 (2012) · Zbl 1273.35330 [63] Valentin, J., Pflüger, D.: Hierarchical gradient-based optimization with B-splines on sparse grids. In: Garcke, J., Pflüger, D. (eds.) Sparse Grids and Applications - Stuttgart 2014, Lecture Notes in Computational Science and Engineering, vol. 109, pp. 315-336. Springer (2016) · Zbl 1338.65165 [64] Villadsen, J., Michelsen, M.L.: Solution of differential equation models by polynomial approximation. Prentice-Hall, Englewood Cliffs (1978) [65] Wan, X., Karniadakis, G.E.: An adaptive multi-element generalized polynomial chaos method for stochastic differential equations. J. Comput. Phys. 209(2), 617-642 (2005) · Zbl 1078.65008 [66] Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4(1), 389-396 (1995) · Zbl 0838.41014 [67] Wendland, H.: Scattered data approximation, Cambridge Monogr. Appl. Comput. Math., vol. 17. Cambridge University Press, Cambridge (2005) · Zbl 1075.65021 [68] Wiener, N.: The homogeneous chaos. Am. J. Math. 60, 897-936 (1938) · JFM 64.0887.02 [69] Wirtz, D., Haasdonk, B.: A vectorial kernel orthogonal greedy algorithm. Dolomites Res. Notes Approx. 6, 83-100 (2013). Proceedings of DWCAA12 [70] Wirtz, D., Karajan, N., Haasdonk, B.: Surrogate modelling of multiscale models using kernel methods. Int. J. Numer. Methods Eng. 101(1), 1-28 (2015) · Zbl 1352.65144 [71] Witteveen, J.A.S., Sarkar, S., Bijl, H.: Modeling physical uncertainties in dynamic stall induced fluid-structure interaction of turbine blades using arbitrary polynomial chaos. Comput. Struct. 85, 866-878 (2007) [72] Zenger, C.: Sparse grids. Notes Numer. Fluid Mech. 31, 241-251 (1991) · Zbl 0763.65091 [73] Zhang, Y., Liu, Y., Pau, G., Oladyshkin, S., Finsterle, S.: Evaluation of multiple reduced-order models to enhance confidence in global sensitivity analyses. Int. J. Greenh. Gas Control 49, 217-226 (2016) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.