## Surfaces containing two circles through each point.(English)Zbl 1416.51003

Summary: We find all analytic surfaces in 3-dimensional Euclidean space such that through each point of the surface one can draw two transversal circular arcs fully contained in the surface (and analytically depending on the point). The search for such surfaces traces back to the works of Darboux from XIXth century. We prove that such a surface is an image of a subset of one of the following sets under some composition of inversions:
-
the set $$\{p+q:p\in \alpha ,q\in \beta \}$$, where $$\alpha ,\beta$$ are two circles in $$\mathbb{R}^3$$;
-
the set $$\{2\frac{p \times q^{}}{|p+q|^2}:p\in \alpha ,q\in \beta ,p+q\ne 0\}$$, where $$\alpha ,\beta$$ are circles in the unit sphere $${S}^2$$;
-
the set $$\{(x,y,z): Q(x,y,z,x^2+y^2+z^2)=0\}$$, where $$Q\in \mathbb{R}[x,y,z,t]$$ has degree 2 or 1.
The proof uses a new factorization technique for quaternionic polynomials.

### MSC:

 51B10 Möbius geometries 13F15 Commutative rings defined by factorization properties (e.g., atomic, factorial, half-factorial) 16H05 Separable algebras (e.g., quaternion algebras, Azumaya algebras, etc.)
Full Text:

### References:

 [1] Beauregard, R.: When is F[x, y] a unique factorization domain? Proc. Am. Math. Soc. 117(1), 67-70 (1993) · Zbl 0785.16017 [2] Beauville, A.: Complex algebraic surfaces, London Math. Soc. Student Texts, vol. 34, 2nd edn. Cambridge University Press, Cambridge, p. 132 (1996) · Zbl 0849.14014 [3] Brauner, H.: Die windschiefen Kegelschnittfläschen. Math. Ann. 183, 33-44 (1969) · Zbl 0181.48602 · doi:10.1007/BF01361261 [4] Cass, D., Arpaia, P.J.: Matrix generation of Pythagorean n-tuples. Proc. Am. Math. Soc. 109(1), 1-7 (1990) · Zbl 0697.10010 [5] Coolidge, J.L.: A Treatise on the Circle and Sphere, p. 603. The Clarendon Press, Oxford (1916) · JFM 46.0921.02 [6] Degen, W.: Die zweifachen Blutelschen Kegelschnittflächen. Manuscr. Math. 55(1), 9-38 (1986) · Zbl 0585.53005 · doi:10.1007/BF01168611 [7] Dietz, R., Hoschek, J., Juettler, B.: An algebraic approach to curves and surfaces on the sphere and on other quadrics. Comput. Aided Geom. Design 10, 211-229 (1993) · Zbl 0781.65009 · doi:10.1016/0167-8396(93)90037-4 [8] Eilenberg, S., Niven, I.: The “fundamental theorem of algebra” for quaternions. Bull. Am. Math. Soc. 50, 246-248 (1944) · Zbl 0063.01228 · doi:10.1090/S0002-9904-1944-08125-1 [9] Gelfand, I., Gelfand, S., Retakh, V., Wilson, R.L.: Quasideterminants. Adv. Math. 193, 56-141 (2005) · Zbl 1079.15007 · doi:10.1016/j.aim.2004.03.018 [10] Gentili, G., Stoppato, C., Struppa, D.: Regular Functions of a Quaternionic Variable. Springer Monographs in Math. Springer, Berlin, Heidelberg, p. 185 (2013) · Zbl 1269.30001 [11] Gentili, G., Stoppato, C.: Zeros of regular functions and polynomials of a quaternionic variable. Mich. Math. J. 56, 655-667 (2008) · Zbl 1184.30048 · doi:10.1307/mmj/1231770366 [12] Gohberg, I., Lancaster, P.J., Bodman, L.: Matrix Polynomials. Academic Press Inc, Cambridge (1982) · Zbl 0482.15001 [13] Guth, L., Zahl, J.: Algebraic curves, Rich Points, and Doubly-Ruled Surfaces. arXiv:1503.02173 · Zbl 1403.51002 [14] Gordon, B., Motzkin, T.S.: On the zeros of polynomials over division rings. Trans. Amer. Math. Soc. 116, 218-226 (1965) · Zbl 0141.03002 · doi:10.1090/S0002-9947-1965-0195853-2 [15] Ivey, T.: Surfaces with orthogonal families of circles. Proc. Am. Math. Soc. 123(3), 865-872 (1995) · Zbl 0820.53020 · doi:10.1090/S0002-9939-1995-1246529-6 [16] Kocik, J.: Clifford algebras and Euclid’s parametrization of Pythagorean triples. Adv. Appl. Clifford Algebras 17(1), 71-93 (2007) · Zbl 1116.15024 · doi:10.1007/s00006-006-0019-2 [17] Kollár, J.: Rational Curves on Algebraic Varieties. Springer, Berlin, Heidelberg (1996) · Zbl 0877.14012 · doi:10.1007/978-3-662-03276-3 [18] Kollár, J.: Quadratic Solutions of Quadratic Forms. arXiv:1607.01276 · Zbl 1401.14126 [19] Krasauskas, R.; Zubė, S.; Dokken, T. (ed.); Muntingh, G. (ed.), Rational Bézier formulas with quaternion and Clifford algebra weights, No. 10, 147-166 (2014), New York · Zbl 1331.65039 [20] Lavicka, R., O’Farrell, A.G., Short, I.: Reversible maps in the group of quaternionic Moebius transformations. Math. Proc. Camb. Philos. Soc. 143(1), 57-69 (2007) · Zbl 1123.30016 · doi:10.1017/S030500410700028X [21] Lubbes, N.: Minimal families of curves on surfaces. J. Symb. Comput. 65, 29-48 (2014). arXiv:1302.6687 · Zbl 1328.14047 · doi:10.1016/j.jsc.2014.01.003 [22] Lubbes, N.: Families of circles on surfaces. arXiv:1302.6710 · Zbl 1328.14047 [23] Lubbes, N.: Clifford and Euclidean Translations of Circles. arXiv:1306.1917v11 · Zbl 1485.14074 [24] Nilov, F., Skopenkov, M.: A surface containing a line and a circle through each point is a quadric. Geom. Dedicata 163(1), 301-310 (2013). arXiv:1110.2338 · Zbl 1273.14077 · doi:10.1007/s10711-012-9750-0 [25] Ore, O.: Theory of non-commutative polynomials. Ann. Math. (II) 34, 480-508 (1933) · Zbl 0007.15101 · doi:10.2307/1968173 [26] Pakharev, A., Skopenkov, M.: Surfaces containing two circles through each point and decomposition of quaternionic matrices. Russ. Math. Surv. 72(2(434)), 195-196 (2017). arXiv:1510.06510 · Zbl 1375.53006 [27] Postnikov, M.: The Fermat Theorem. An Introduction to Algebraic Numbers Theory. Nauka, Moscow, p. 128 (1978) [28] Pottmann, H., Shi, L., Skopenkov, M.: Darboux cyclides and webs from circles. Comput. Aided Geom. D. 29(1), 77-97 (2012). arXiv:1106.1354 · Zbl 1244.65026 · doi:10.1016/j.cagd.2011.10.002 [29] Schicho, J.: The multiple conical surfaces. Contrib. Algebra Geom. 42(1), 71-87 (2001) · Zbl 0987.14005 [30] Shafarevich, I.R.: Algebraic Geometry, vol. 1. Springer, New York (1974) · Zbl 0284.14001 [31] Smertnig, D.: Factorizations of elements in noncommutative rings: a survey. In: Chapman, S., Fontana, M., Geroldinger, A., Olberding, B. (eds) Multiplicative Ideal Theory and Factorization Theory. Springer Proceedings in Mathematics and Statistics, vol. 170. Springer, Cham (2016) · Zbl 1356.16029 [32] Takeuchi, N.: Cyclides. Hokkaido Math. J. 29, 119-148 (2000) · Zbl 0970.53004 · doi:10.14492/hokmj/1350912960 [33] Timorin, V.A.: Rectifiable pencils of conics. Mosc. Math. J. 7(3), 561-570 (2007) · Zbl 1144.51003 · doi:10.17323/1609-4514-2007-7-3-561-570
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.