New mixed finite element methods for natural convection with phase-change in porous media. (English) Zbl 1416.76091

Summary: This article is concerned with the mathematical and numerical analysis of a steady phase change problem for non-isothermal incompressible viscous flow. The system is formulated in terms of pseudostress, strain rate and velocity for the Navier-Stokes-Brinkman equation, whereas temperature, normal heat flux on the boundary, and an auxiliary unknown are introduced for the energy conservation equation. In addition, and as one of the novelties of our approach, the symmetry of the pseudostress is imposed in an ultra-weak sense, thanks to which the usual introduction of the vorticity as an additional unknown is no longer needed. Then, for the mathematical analysis two variational formulations are proposed, namely mixed-primal and fully-mixed approaches, and the solvability of the resulting coupled formulations is established by combining fixed-point arguments, Sobolev embedding theorems and certain regularity assumptions. We then construct corresponding Galerkin discretizations based on adequate finite element spaces, and derive optimal a priori error estimates. Finally, numerical experiments in 2D and 3D illustrate the interest of this scheme and validate the theory.


76M10 Finite element methods applied to problems in fluid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
76R05 Forced convection
76D07 Stokes and related (Oseen, etc.) flows
Full Text: DOI Link


[1] Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Academic Press, Elsevier Ltd, Cambridge (2003) · Zbl 1098.46001
[2] Agroum, R., Bernardi, C., Satouri, J.: Spectral discretization of the time-dependent Navier-Stokes problem coupled with the heat equation. Appl. Math. Comp. 268, 59-82 (2015) · Zbl 1410.76315
[3] Aldbaissy, R., Hecht, F., Mansour, G., Sayah, T.: A full discretisation of the time-dependent Boussinesq (buoyancy) model with nonlinear viscosity. Calcolo 55(44), 1-29 (2018) · Zbl 1404.35317
[4] Almonacid, J., Gatica, G.N., Oyarzúa, R., and Ruiz-Baier, R.: A new mixed finite element method for the \[n\] n-dimensional Boussinesq problem with temperature-dependent viscosity. Preprint 2018-18, Centro de Investigación en Ingeniería Matemática (CI \[^22\] MA), Universidad de Concepción, Chile, (2018). https://www.ci2ma.udec.cl · Zbl 1404.65248
[5] Almonacid, J., Gatica, G.N., Oyarzúa, R.: A mixed-primal finite element method for the Boussinesq problem with temperature-dependent viscosity. Calcolo 55(3), 42 (2018) · Zbl 1404.65248
[6] Alvarez, M., Gatica, G.N., Ruiz-Baier, R.: An augmented mixed – primal finite element method for a coupled flow-transport problem. ESAIM: Math. Model. Numer. Anal. 49(5), 1399-1427 (2015) · Zbl 1329.76157
[7] Alvarez, M., Gomez-Vargas, B., Ruiz-Baier, R., and Woodfield, J.: Stability and finite element approximation of phase change models for natural convection in porous media. J. Comput. Appl. Math., in press (2019). · Zbl 1416.76133
[8] Ben-David, O., Levy, A., Mikhailovich, B., Azulay, A.: 3D numerical and experimental study of gallium melting in a rectangular container. Int. J. Heat Mass Transf. 67, 260-271 (2013)
[9] Brandeis, G., Marsh, B.D.: The convective liquidus in solidifying magma chamber: a fluid dynamic investigation. Nature 339, 613-616 (1989)
[10] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991) · Zbl 0788.73002
[11] Camaño, J., Oyarzúa, R., Ruiz-Baier, R., Tierra, G.: Error analysis of an augmented mixed method for the Navier-Stokes problem with mixed boundary conditions. IMA J. Numer. Anal. 38(3), 1452-1484 (2018) · Zbl 1477.65198
[12] Camaño, J., Gatica, G.N., Oyarzúa, R., Ruiz-Baier, R.: An augmented stress-based mixed fi- nite element method for the Navier-Stokes equations with nonlinear viscosity. Numer. Methods Partial Differ. Equ. 33(5), 1692-1725 (2017) · Zbl 1394.65143
[13] Cao, Y., Chen, S.: Analysis and finite element approximation of bioconvection flows with concentration dependent viscosity. Int. J. Numer. Anal. Mod. 11(1), 86-101 (2013) · Zbl 1311.76161
[14] Colmenares, E., Gatica, G.N., Oyarzúa, R.: Analysis of an augmented mixed-primal formulation for the stationary Boussinesq problem. Numer. Methods Partial Differ. Equ. 32(2), 445-478 (2016) · Zbl 1381.76158
[15] Colmenares, E., Gatica, G.N., Oyarzúa, R.: An augmented fully-mixed finite element method for the stationary Boussinesq problem. Calcolo 54(1), 167-205 (2017) · Zbl 1397.76065
[16] Colmenares, E., Neilan, M.: Dual-mixed finite element methods for the stationary Boussinesq problem. Comp. Math. Appl. 72, 1828-1850 (2016) · Zbl 1398.76099
[17] Ciarlet, P.: Linear and Nonlinear Functional Analysis with Applications. Society for Industrial and Applied Mathematics, Philadelphia, PA (2013) · Zbl 1293.46001
[18] Danaila, I., Moglan, R., Hecht, F., Le Masson, S.: A Newton method with adaptive finite elements for solving phase-change problems with natural convection. J. Comput. Phys. 274, 826-840 (2014) · Zbl 1351.76056
[19] Deteix, J., Jendoubi, A., Yakoubi, D.: A coupled prediction scheme for solving the Navier-Stokes and convection-diffusion equations. SIAM J. Numer. Anal. 52(5), 2415-2439 (2014) · Zbl 1307.76072
[20] Dinniman, M.S., Asay-Davis, X.S., Galton-Fenzi, B.K., Holland, P.R., Jenkins, A., Timmermann, R.: Modeling ice shelf/ocean interaction in antarctica: a review. Oceanography 29(4), 144-153 (2016)
[21] Dutil, Y., Rousse, D.R., Salah, N.B., Lassue, S., Zalewski, L.: A review on phase-change materials: mathematical modeling and simulations. Renew. Sustain. Energy Rev. 15(1), 112-130 (2011)
[22] Farhloul, M., Nicaise, S., Paquet, L.: A mixed formulation of Boussinesq equations: analysis of nonsingular solutions. Math. Comp. 69(231), 965-986 (2000) · Zbl 0965.76080
[23] Gatica, G.N.: Analysis of a new augmented mixed finite element method for linear elasticity allowing \[\mathbb{RT}_0-\mathbb{P}_1-\mathbb{P}_0\] RT0-P1-P0 approximations. M2AN Math. Model. Numer. Anal. 40(1), 1-28 (2006)
[24] Gatica, G.N.: A Simple Introduction to the Mixed Finite Element Method: Theory and Applications. Springer Briefs in Mathematics. Springer, Cham (2014)
[25] Gatica, G.N., Gomez-Vargas, B., Ruiz-Baier, R.: Analysis and mixed-primal finite element discretisations for stress-assisted diffusion problems. Comput. Methods Appl. Mech. Eng. 337, 411-438 (2018) · Zbl 1440.76062
[26] Holter, K.E., Kuchta, M., and Mardal, K.-A.: Trace constrained problems in FEniCS. In: Hale, J.S. (ed.) Proceedings of the FEniCS Conference 2017 (2017). https://doi.org/10.6084/m9.figshare.5086369
[27] Hsu, H.W., Postberg, F., Sekine, Y., et al.: Ongoing hydrothermal activities within Enceladus. Nature 7542(519), 207-210 (2015)
[28] Kan-on, Y., Narukawa, K., Teramoto, Y.: On the equations of bioconvective flow. J. Math. Kyoto Univ. 32(1), 135-153 (1992) · Zbl 0777.76101
[29] Ma, X., Tao, Z., and Zhang, T.: A variational multiscale method for steady natural convection problem based on two-grid discretization. Adv. Diff. Equ. 2-20 (2016) · Zbl 1396.76052
[30] Morgan, K.: A numerical analysis of freezing and melting with convection. Comput. Methods Appl. Mech. Eng. 28(3), 275-284 (1981)
[31] Oyarzúa, R., Qin, T., Schötzau, D.: An exactly divergence-free finite element method for a generalized Boussinesq problem. IMA J. Numer. Anal. 34(3), 1104-1135 (2014) · Zbl 1301.76052
[32] Oyarzúa, R., Zúñiga, P.: Analysis of a conforming finite element method for the Boussinesq problem with temperature-dependent parameters. J. Comput. Appl. Math. 323, 71-94 (2017) · Zbl 1364.76094
[33] Schroeder, P.W., Lube, G.: Stabilised dG-FEM for incompressible natural convection flows with boundary and moving interior layers on non-adapted meshes. J. Comput. Phys. 335, 760-779 (2017) · Zbl 1380.65286
[34] Roberts, JE; Thomas, JM; Ciarlet, PG (ed.); Lions, JL (ed.), Mixed and hybrid methods, No. II (1991), Amsterdam
[35] Ulvrová, M., Labrosse, S., Coltice, N., Røaback, P., Tackley, P.J.: Numerical modelling of convection interacting with a melting and solidification front: application to the thermal evolution of the basal magma ocean. Phys. Earth Planet. Inter. 206-207, 51-66 (2012)
[36] Voller, V.R., Cross, M., Markatos, N.C.: An enthalpy method for convection/diffusion phase change. Int. J. Numer. Methods Eng. 24(1), 271-284 (1987) · Zbl 0609.76104
[37] Voller, V.R., Prakash, C.: A fixed grid numerical modelling methodology for convection and phase transition efficiently. J. Comput. Phys. 30(8), 1709-1719 (1987)
[38] Vidalain, G., Gosselin, L., Lacroix, M.: An enhanced thermal conduction model for the prediction of convection dominated solidliquid phase change. Int. J. Heat Mass Transf. 52, 1753-1760 (2009) · Zbl 1157.80372
[39] Wang, S., Faghri, A., Bergman, T.L.: A comprehensive numerical model for melting with natural convection. Int. J. Heat Mass Transfer. 53(9-10), 1986-2000 (2010) · Zbl 1190.80044
[40] Wittig, K., Nikrityuk, P.A.: Three-dimensionality of fluid flow in the benchmark experiment for a pure metal melting on a vertical wall. IOP Conf. Ser.: Mater. Sci. Eng. 27, 012054 (2012)
[41] Zhang, Y., Hou, Y., Jia, H.: Subgrid stabilized defect-correction method for a steady-state natural convection problem. Comput. Math. Appl. 67, 497-514 (2014) · Zbl 1381.76210
[42] Zimmerman, A.G., and Kowalski, J.:Monolithic simulation of convection-coupled phase-change- verification and reproducibility. Preprint (2018). arXiv:1801.03429v1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.