×

Stability and finite element approximation of phase change models for natural convection in porous media. (English) Zbl 1416.76133

Summary: In this paper we study a phase change problem for non-isothermal incompressible viscous flows. The underlying continuum is modelled as a viscous Newtonian fluid where the change of phase is either encoded in the viscosity itself, or in the Brinkman-Boussinesq approximation where the solidification process influences the drag directly. We address these and other modelling assumptions and their consequences in the simulation of differentially heated cavity flows of diverse type. A second order finite element method for the primal formulation of the problem in terms of velocity, temperature, and pressure is constructed, and we provide conditions for its stability. We finally present several numerical tests in 2D and 3D, corroborating the accuracy of the numerical scheme as well as illustrating key properties of the model.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M30 Numerical methods for ill-posed problems for initial value and initial-boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage
80A22 Stefan problems, phase changes, etc.
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Boussinesq, J., Théorie De L’écoulement Tourbillonnant Et Tumultueux Des Liquides Dans Les Lits Rectilignes a Grande Section (1897), Gauthier-Villars et fils · JFM 27.0655.03
[2] Schroeder, P. W.; Lube, G., Stabilised dG-FEM for incompressible natural convection flows with boundary and moving interior layers on non-adapted meshes, J. Comput. Phys., 335, 760-779 (2017) · Zbl 1380.65286
[3] Carman, P. C., Fluid flow through granular beds, Trans. Inst. Chem. Eng. Lond., 15, 150-166 (1937)
[4] Kozeny, J., Ueber kapillare leitung des wassers im boden, Sitzungsber. Akad. Wiss. Wien., 136, 2a, 271-306 (1927)
[5] Danaila, I.; Moglan, R.; Hecht, F.; Le Masson, S., A Newton method with adaptive finite elements for solving phase-change problems with natural convection, J. Comput. Phys., 274, 826-840 (2014) · Zbl 1351.76056
[7] Zhang, Y.; Hou, Y.; Jia, H., Subgrid stabilized defect-correction method for a steady-state natural convection problem, Comput. Math. Appl., 67, 497-514 (2014) · Zbl 1381.76210
[8] Ma, X.; Tao, Z.; Zhang, T., A variational multiscale method for steady natural convection problem based on two-grid discretization, Adv. Differential Equations, 2-20 (2016) · Zbl 1396.76052
[9] Agroum, R.; Bernardi, C.; Satouri, J., Spectral discretization of the time-dependent Navier-Stokes problem coupled with the heat equation, Appl. Math. Comput., 268, 59-82 (2015) · Zbl 1410.76315
[10] Aldbaissy, R.; Hecht, F.; Mansour, G.; Sayah, T., A full discretisation of the time-dependent Boussinesq (buoyancy) model with nonlinear viscosity, Calcolo, 55, 44 (2018), 1-29 · Zbl 1404.35317
[11] Beckermann, C.; Viskanta, R., Natural convection solid/liquid phase change in porous media, Int. J. Heat Mass Transfer, 31, 1, 35-46 (1988)
[12] Deteix, J.; Jendoubi, A.; Yakoubi, D., A coupled prediction scheme for solving the Navier-Stokes and convection – diffusion equations, SIAM J. Numer. Anal., 52, 5, 2415-2439 (2014) · Zbl 1307.76072
[14] Tabata, M.; Tagami, D., Error estimates of finite element methods for nonstationary thermal convection problems with temperature-dependent coefficients, Numer. Math., 100, 351-372 (2005) · Zbl 1082.65090
[15] Oyarzúa, R.; Zúñiga, P., Analysis of a conforming finite element method for the Boussinesq problem with temperature-dependent parameters, J. Comput. Appl. Math., 323, 71-94 (2017) · Zbl 1364.76094
[16] Oyarzúa, R.; Qin, T.; Schötzau, D., An exactly divergence-free finite element method for a generalized Boussinesq problem, IMA J. Numer. Anal., 34, 3, 1104-1135 (2014) · Zbl 1301.76052
[18] Colmenares, E.; Gatica, G. N.; Oyarzúa, R., Fixed point strategies for mixed variational formulations of the stationary Boussinesq problem, C. R. Math., 354, 1, 57-62 (2016) · Zbl 1338.35356
[19] Colmenares, E.; Neilan, M., Dual-mixed finite element methods for the stationary Boussinesq problem, Comput. Math. Appl., 72, 1828-1850 (2016) · Zbl 1398.76099
[20] Farhloul, M.; Nicaise, S.; Paquet, L., A mixed formulation of boussinesq equations: Analysis of nonsingular solutions, Math. Comp., 69, 231, 965-986 (2000) · Zbl 0965.76080
[21] Bernardi, C.; El Alaoui, L.; Mghazli, Z., A posteriori analysis of a space and time discretization of a nonlinear model for the flow in partially saturated porous media, IMA J. Numer. Anal., 34, 3, 1002-1036 (2014) · Zbl 1353.76050
[22] Kowalewski, T. A.; Rebow, M., Freezing of water in a differentially heated cubic cavity, Int. J. Comput. Fluid Dyn., 11, 3-4, 193-210 (1999) · Zbl 0947.76553
[23] Gupta, S. C., A moving grid numerical scheme for multi-dimensional solidification with transition temperature range, Comput. Methods Appl. Mech. Engrg., 189, 2, 525-544 (2000) · Zbl 0977.76061
[24] Le Pentrec, Y.; Lauriat, G., Effects of the heat transfer at the side walls on natural convection in cavities, J. Heat Trans., 112, 2, 370-378 (1990)
[26] Quinn, H. M., A reconciliation of packed column permeability data: Column permeability as a function of particle porosity, J. Mater., Article 636507 pp. (2014)
[28] Einstein, A., Eine neue bestimmung der molekuldimensionen, Ann. Phys., 19, 286-306 (1906) · JFM 37.0811.01
[29] Brinkman, H. C., The viscosity of concentrated suspensions and solutions, J. Chem. Phys., 20, 571 (1952)
[30] Roscoe, R., The viscosity of suspensions of rigid spheres, Br. J. Appl. Phys., 3, 267-269 (1952)
[31] Ensslin, K., Quantum physics in quantum dots, (Nanophysics: Coherence and Transport. Nanophysics: Coherence and Transport, École d’été de Physique des Houches, Session LXXXI Les Houches (2005)), 585-586
[32] Ruiz-Baier, R.; Torres, H., Numerical solution of a multidimensional sedimentation problem using finite volume-element methods, Appl. Numer. Math., 95, 280-291 (2015) · Zbl 1320.76085
[33] Dhaidan, N. S.; Khodadadi, J.; Al-Hattab, T. A.; Al-Mashat, S. M., Experimental and numerical study of constrained melting of n-octadecane with cuo nanoparticle dispersions in a horizontal cylindrical capsule subjected to a constant heat flux, Int. J. Heat Mass Transfer, 67, 523-534 (2013)
[34] Krieger, I. M.; Dougherty, T. J., A mechanism for non-newtonian flow in suspension of rigid spheres, Trans. Soc. Rheol., 3, 137-152 (1959) · Zbl 0100.21502
[35] Boland, J.; Layton, W., An analysis of the finite element method for natural convection problems, Numer. Methods Partial Differntial Equations, 2, 115-126 (1990) · Zbl 0703.76071
[36] Abbout, H.; Girault, V.; Sayah, T., A second order accuracy for a full discretized time-dependent Navier-Stokes equations by a two-grid scheme, Numer. Math., 114, 189-231 (2009) · Zbl 1407.76111
[38] Almonacid, J.; Gatica, G. N.; Oyarzúa, R., A mixed – primal finite element method for the Boussinesq problem with temperature-dependent viscosity, Calcolo, 55, 36 (2018), 1-42 · Zbl 1404.65248
[39] Camaño, J.; Gatica, G. N.; Oyarzua, R.; Ruiz-Baier, R., An augmented stress-based mixed finite element method for the Navier-Stokes equations with nonlinear viscosity, Numer. Methods Partial Differential Equations, 33, 5, 1692-1725 (2017) · Zbl 1394.65143
[40] Gatica, G. N.; Gomez-Vargas, B.; Ruiz-Baier, R., Analysis and mixed-primal finite element discretisations for stress-assisted diffusion problems, Comput. Methods Appl. Mech. Engrg., 337, 411-438 (2018) · Zbl 1440.76062
[41] Elman, H. C.; Silvester, D. J.; Wathen, A. J., Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics (2014), Oxford University Press · Zbl 1304.76002
[42] Wan, D. C.; Patnaik, B. S.V.; Wei, G. W., A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution, Numer. Heat Transfer B, 40, 199-228 (2001)
[43] de Vahl Davis, G., Natural convection of air in a square cavity: A benchmark numerical solution, Internat. J. Numer. Methods Fluids, 3, 3, 249-264 (1983) · Zbl 0538.76075
[44] Lenarda, P.; Paggi, M.; Ruiz-Baier, R., Partitioned coupling of advection-diffusion-reaction systems and Brinkman flows, J. Comput. Phys., 344, 281-302 (2017) · Zbl 1380.76041
[45] Arena, S.; Casti, E.; Gasia, J.; Cabeza, L. F.; Cau, G., Numerical simulation of a finned-tube lhtes system: influence of the mushy zone constant on the phase change behaviour, Energy Procedia, 126, 9, 517-524 (2017)
[46] Iyi, D.; Hasan, R., Natural convection flow and heat transfer in an enclosure containing staggered arrangement of blockages, Proc. Eng., 105, 176-183 (2015)
[47] Costa, A., Viscosity of high crystal content melts: Dependence on solid fraction, Geophys. Res. Lett., 32, L22308 (2005)
[48] Mader, H.; Llewellin, E.; Mueller, S., The rheology of two-phase magmas: A review and analysis, J. Volcanol. Geotherm. Res., 257, 135-158 (2013)
[49] Ulvrová, M.; Labrosse, S.; Coltice, N.; Røaback, P.; Tackley, P. J., Numerical modelling of convection interacting with a melting and solidification front: Application to the thermal evolution of the basal magma ocean, Phys. Earth Planet. Inter., 206-207, 51-66 (2012)
[50] Walker, R. T.; Holland, D. M., A two-dimensional coupled model for ice shelf – ocean interaction, Ocean Model., 17, 123-139 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.