Macpherson, Niall T. Type II solutions on \( \mathrm{AdS}_3 \times S^3 \times S^3\) with large superconformal symmetry. (English) Zbl 1416.83144 J. High Energy Phys. 2019, No. 5, Paper No. 89, 26 p. (2019). Summary: New local solutions in type II supergravity that are foliations of \( \mathrm{AdS}_3 \times S^3 \times S^3\) over an interval and preserve at least large \( \mathcal{N}=\left(4,0\right) \) supersymmetry are found. Some cases have compact internal space, some not and one experiences an enhancement to \( \mathcal{N}=\left(4,4\right) \). We present two new globally compact solutions with D brane and O plane sources explicitly, one in each of IIA and IIB. The former is part of an infinite family of solutions with D8/O8s back reacted on \( \mathrm{AdS}_3 \times S^3 \times S^3 \times S^1 \). In the latter the algebra degenerates to small \( \mathcal{N}=\left(4,0\right) \) and the internal geometry is bounded between D5s and O5s back reacted on \( \mathrm{AdS}_3 \times S^3 \times \mathbb{R}^4 \). Cited in 26 Documents MSC: 83E50 Supergravity 83C15 Exact solutions to problems in general relativity and gravitational theory 81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics 81T60 Supersymmetric field theories in quantum mechanics 83E30 String and superstring theories in gravitational theory Keywords:AdS-CFT correspondence; D-branes; extended supersymmetry PDF BibTeX XML Cite \textit{N. T. Macpherson}, J. High Energy Phys. 2019, No. 5, Paper No. 89, 26 p. (2019; Zbl 1416.83144) Full Text: DOI arXiv References: [1] H.J. Boonstra, B. Peeters and K. Skenderis, Brane intersections, anti-de Sitter space-times and dual superconformal theories, Nucl. Phys.B 533 (1998) 127 [hep-th/9803231] [INSPIRE]. · Zbl 0956.81060 [2] A. Giveon, D. Kutasov and N. Seiberg, Comments on string theory on AdS3, Adv. Theor. Math. Phys.2 (1998) 733 [hep-th/9806194] [INSPIRE]. · Zbl 1041.81575 [3] S. Elitzur, O. Feinerman, A. Giveon and D. Tsabar, String theory on AdS3 × S3 × S3 × S1, Phys. Lett.B 449 (1999) 180 [hep-th/9811245] [INSPIRE]. · Zbl 1058.81649 [4] J. de Boer, A. Pasquinucci and K. Skenderis, AdS/CFT dualities involving large 2-D N = 4 superconformal symmetry, Adv. Theor. Math. Phys.3 (1999) 577 [hep-th/9904073] [INSPIRE]. · Zbl 0989.81088 [5] R. Argurio, A. Giveon and A. Shomer, Superstring theory on AdS3 × G/H and boundary N = 3 superconformal symmetry, JHEP04 (2000) 010 [hep-th/0002104] s[INSPIRE]. · Zbl 0959.81066 [6] S. Gukov, E. Martinec, G.W. Moore and A. Strominger, The search for a holographic dual to AdS3 × S3 × S3 × S1, Adv. Theor. Math. Phys.9 (2005) 435 [hep-th/0403090] [INSPIRE]. · Zbl 1121.81106 [7] N. Kim, AdS3solutions of IIB supergravity from D3-branes, JHEP01 (2006) 094 [hep-th/0511029] [INSPIRE]. [8] J.P. Gauntlett, O.A.P. Mac Conamhna, T. Mateos and D. Waldram, Supersymmetric AdS3solutions of type IIB supergravity, Phys. Rev. Lett.97 (2006) 171601 [hep-th/0606221] [INSPIRE]. · Zbl 1228.83112 [9] A. Donos, J.P. Gauntlett and J. Sparks, AdS3 × (S3 × S3 × S1) Solutions of Type IIB String Theory, Class. Quant. Grav.26 (2009) 065009 [arXiv:0810.1379] [INSPIRE]. · Zbl 1162.83365 [10] E. D’Hoker, J. Estes, M. Gutperle and D. Krym, Exact Half-BPS Flux Solutions in M-theory. I: Local Solutions, JHEP08 (2008) 028 [arXiv:0806.0605] [INSPIRE]. · Zbl 1329.83186 [11] J. Estes, R. Feldman and D. Krym, Exact half-BPS flux solutions in M theory with D(2, 1; c′; 0)2symmetry: Local solutions, Phys. Rev.D 87 (2013) 046008 [arXiv:1209.1845] [INSPIRE]. [12] C. Bachas, E. D’Hoker, J. Estes and D. Krym, M-theory Solutions Invariant under D(2, 1; γ) ⊕ D(2, 1; γ), Fortsch. Phys.62 (2014) 207 [arXiv:1312.5477] [INSPIRE]. · Zbl 1338.81310 [13] J. Jeong, E. Ó Colgáin and K. Yoshida, SUSY properties of warped AdS3, JHEP06 (2014) 036 [arXiv:1402.3807] [INSPIRE]. [14] A. Donos and J.P. Gauntlett, Flowing from AdS5to AdS3with T1,1, JHEP08 (2014) 006 [arXiv:1404.7133] [INSPIRE]. [15] Ö. Kelekci, Y. Lozano, N.T. Macpherson and E. Ó Colgáin, Supersymmetry and non-Abelian T-duality in type-II supergravity, Class. Quant. Grav.32 (2015) 035014 [arXiv:1409.7406] [INSPIRE]. · Zbl 1312.83033 [16] Y. Lozano, N.T. Macpherson, J. Montero and E. Ó Colgáin, New AdS3 × S2T-duals \[withN=04 \mathcal{N}=\left(0,4\right)\] supersymmetry, JHEP08 (2015) 121 [arXiv:1507.02659] [INSPIRE]. · Zbl 1388.81861 [17] P. Karndumri and E. Ó Colgáin, 3D supergravity from wrapped M5-branes, JHEP03 (2016) 188 [arXiv:1508.00963] [INSPIRE]. · Zbl 1388.83839 [18] Ö. Kelekci, Y. Lozano, J. Montero, E. Ó Colgáin and M. Park, Large superconformal near-horizons from M-theory, Phys. Rev.D 93 (2016) 086010 [arXiv:1602.02802] [INSPIRE]. [19] L. Eberhardt, M.R. Gaberdiel, R. Gopakumar and W. Li, BPS spectrum on AdS3×S3×S3×S1, JHEP03 (2017) 124 [arXiv:1701.03552] [INSPIRE]. [20] C. Couzens, C. Lawrie, D. Martelli, S. Schäfer-Nameki and J.-M. Wong, F-theory and AdS3/CFT2, JHEP08 (2017) 043 [arXiv:1705.04679] [INSPIRE]. [21] C. Couzens, D. Martelli and S. Schäfer-Nameki, F-theory and AdS3/CFT2(2, 0), JHEP06 (2018) 008 [arXiv:1712.07631] [INSPIRE]. · Zbl 1395.81211 [22] L. Eberhardt, Supersymmetric AdS3supergravity backgrounds and holography, JHEP02 (2018) 087 [arXiv:1710.09826] [INSPIRE]. · Zbl 1387.83102 [23] S. Datta, L. Eberhardt and M.R. Gaberdiel, \[StringyN=22 \mathcal{N}=\left(2,2\right)\] holography for AdS3, JHEP01 (2018) 146 [arXiv:1709.06393] [INSPIRE]. · Zbl 1384.81095 [24] L. Eberhardt and I.G. Zadeh, \[N=33 \mathcal{N}=\left(3,3\right)\] holography on AdS3 × (S3 × S3 × S1)/ℤ2, JHEP07 (2018) 143 [arXiv:1805.09832] [INSPIRE]. [25] S. Beck, U. Gran, J. Gutowski and G. Papadopoulos, All Killing Superalgebras for Warped AdS Backgrounds, JHEP12 (2018) 047 [arXiv:1710.03713] [INSPIRE]. · Zbl 1405.83070 [26] G. Dibitetto, G. Lo Monaco, A. Passias, N. Petri and A. Tomasiello, AdS3Solutions with Exceptional Supersymmetry, Fortsch. Phys.66 (2018) 1800060 [arXiv:1807.06602] [INSPIRE]. [27] A. Sevrin, W. Troost and A. Van Proeyen, Superconformal Algebras in Two-Dimensions with N = 4, Phys. Lett.B 208(1988) 447 [INSPIRE]. [28] D. Tong, The holographic dual of AdS3 × S3 × S3 × S1, JHEP04 (2014) 193 [arXiv:1402.5135] [INSPIRE]. [29] L. Eberhardt, M.R. Gaberdiel and W. Li, A holographic dual for string theory on AdS3 × S3 × S3 × S1, JHEP08 (2017) 111 [arXiv:1707.02705] [INSPIRE]. · Zbl 1381.81112 [30] G. Dibitetto and N. Petri, Surface defects in the D4 − D8 brane system, JHEP01 (2019) 193 [arXiv:1807.07768] [INSPIRE]. · Zbl 1409.83180 [31] G. Dibitetto and N. Petri, AdS2solutions and their massive IIA origin, arXiv:1811.11572 [INSPIRE]. · Zbl 1416.83138 [32] A.S. Haupt, S. Lautz and G. Papadopoulos, A non-existence theorem for N > 16 supersymmetric AdS3backgrounds, JHEP07 (2018) 178 [arXiv:1803.08428] [INSPIRE]. · Zbl 1395.81226 [33] N.T. Macpherson and A. Tomasiello, Minimal flux Minkowski classification, JHEP09 (2017) 126 [arXiv:1612.06885] [INSPIRE]. · Zbl 1382.81188 [34] N.T. Macpherson, J. Montero and D. Prins, Mink3 × S3solutions of type-II supergravity, Nucl. Phys.B 933 (2018) 185 [arXiv:1712.00851] [INSPIRE]. · Zbl 1395.83129 [35] F. Apruzzi, J.C. Geipel, A. Legramandi, N.T. Macpherson and M. Zagermann, Minkowski4 × S2solutions of IIB supergravity, Fortsch. Phys.66 (2018) 1800006 [arXiv:1801.00800] [INSPIRE]. [36] G.B. De Luca, G.L. Monaco, N.T. Macpherson, A. Tomasiello and O. Varela, The geometry \[ofN=3 \mathcal{N}=3\] AdS4in massive IIA, JHEP08 (2018) 133 [arXiv:1805.04823] [INSPIRE]. · Zbl 1396.83060 [37] A. Legramandi and N.T. Macpherson, Mink4 × S2Solutions of 10 and 11 Dimensional Supergravity, arXiv:1811.11224 [INSPIRE]. [38] F. Apruzzi, M. Fazzi, D. Rosa and A. Tomasiello, All AdS7solutions of type-II supergravity, JHEP04 (2014) 064 [arXiv:1309.2949] [INSPIRE]. [39] E. D’Hoker, J. Estes, M. Gutperle, D. Krym and P. Sorba, Half-BPS supergravity solutions and superalgebras, JHEP12 (2008) 047 [arXiv:0810.1484] [INSPIRE]. · Zbl 1329.83193 [40] C. Córdova, G.B. De Luca and A. Tomasiello, Classical de Sitter Solutions of 10-Dimensional Supergravity, Phys. Rev. Lett.122 (2019) 091601 [arXiv:1812.04147] [INSPIRE]. [41] S. Cremonesi and A. Tomasiello, 6d holographic anomaly match as a continuum limit, JHEP05 (2016) 031 [arXiv:1512.02225] [INSPIRE]. · Zbl 1388.83215 [42] L. Martucci and P. Smyth, Supersymmetric D-branes and calibrations on general N = 1 backgrounds, JHEP11 (2005) 048 [hep-th/0507099] [INSPIRE]. [43] D. Lüst, P. Patalong and D. Tsimpis, Generalized geometry, calibrations and supersymmetry in diverse dimensions, JHEP01 (2011) 063 [arXiv:1010.5789] [INSPIRE]. · Zbl 1214.81158 [44] A. Legramandi, L. Martucci and A. Tomasiello, Timelike structures of ten-dimensional supersymmetry, JHEP04 (2019) 109 [arXiv:1810.08625] [INSPIRE]. · Zbl 1415.83059 [45] M. Haack, D. Lüst, L. Martucci and A. Tomasiello, Domain walls from ten dimensions, JHEP10 (2009) 089 [arXiv:0905.1582] [INSPIRE]. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.