×

Analytical aspects of spatially adapted total variation regularisation. (English) Zbl 1416.94016

Summary: In this paper we study the structure of solutions of the one dimensional weighted total variation regularisation problem, motivated by its application in signal recovery tasks. We study in depth the relationship between the weight function and the creation of new discontinuities in the solution. A partial semigroup property relating the weight function and the solution is shown and analytic solutions for simply data functions are computed. We prove that the weighted total variation minimisation problem is well-posed even in the case of vanishing weight function, despite the lack of coercivity. This is based on the fact that the total variation of the solution is bounded by the total variation of the data, a result that it also shown here. Finally the relationship to the corresponding weighted fidelity problem is explored, showing that the two problems can produce completely different solutions even for very simple data functions.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
65K10 Numerical optimization and variational techniques
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Acar, R.; Vogel, C. R., Analysis of bounded variation penalty methods for ill-posed problems, Inverse Probl., 10, 6, 1217-1229 (1994) · Zbl 0809.35151
[2] Allard, W., Total variation regularization for image denoising, I. Geometric theory, SIAM J. Math. Anal., 39, 4, 1150-1190 (2008) · Zbl 1185.49047
[3] Allard, W., Total variation regularization for image denoising, II. Examples, SIAM J. Imaging Sci., 1, 4, 400-417 (2008) · Zbl 1185.49048
[4] Allard, W., Total variation regularization for image denoising, III. Examples, SIAM J. Imaging Sci., 2, 2, 532-568 (2009) · Zbl 1175.49038
[5] Almansa, A.; Ballester, C.; Caselles, V.; Haro, G., A TV based restoration model with local constraints, J. Sci. Comput., 34, 3, 209-236 (2007) · Zbl 1218.94007
[6] Ambrosio, L.; Fusco, N.; Pallara, D., Functions of Bounded Variation and Free Discontinuity Problems (2000), Oxford University Press: Oxford University Press USA · Zbl 0957.49001
[7] Athavale, P.; Jerrard, R. L.; Novaga, M.; Orlandi, G., Weighted TV minimization and application to vortex density models (2015), preprint
[8] Attouch, H.; Buttazzo, G.; Michaille, G., Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization, vol. 17 (2014), SIAM · Zbl 1311.49001
[9] Bertalmio, M.; Caselles, V.; Rougé, B.; Solé, A., TV based image restoration with local constraints, J. Sci. Comput., 19, 1, 95-122 (2003) · Zbl 1034.49036
[10] Bredies, K.; Kunisch, K.; Pock, T., Total generalized variation, SIAM J. Imaging Sci., 3, 3, 492-526 (2010) · Zbl 1195.49025
[11] Bredies, K.; Dong, Y.; Hintermüller, M., Spatially dependent regularization parameter selection in total generalized variation models for image restoration, Int. J. Comput. Math., 90, 1, 109-123 (2013) · Zbl 1278.68327
[12] Bredies, K.; Kunisch, K.; Valkonen, T., Properties of \(L^1\)-TGV \({}^2\): the one-dimensional case, J. Math. Anal. Appl., 398, 1, 438-454 (2013) · Zbl 1253.49024
[13] Burger, M.; Papafitsoros, K.; Papoutsellis, E.; Schönlieb, C. B., Infimal convolution regularisation functionals of BV and \(L^p\) spaces. Part I: the finite \(p\) case, J. Math. Imaging Vision, 55, 3, 343-369 (2016) · Zbl 1342.49014
[14] Calatroni, L.; Cao, V. C.; De los Reyes, J. C.; Schönlieb, C. B.; Valkonen, T., Bilevel approaches for learning of variational imaging models (2015), arXiv preprint
[15] Cao, V. C.; De los Reyes, J. C.; Schönlieb, C. B., Learning optimal spatially-dependent regularization parameters in total variation image restoration (2016), arXiv preprint
[16] Caselles, V.; Chambolle, A.; Novaga, M., The discontinuity set of solutions of the TV denoising problem and some extensions, Multiscale Model. Simul., 6, 3, 879-894 (2007) · Zbl 1145.49024
[17] Chambolle, A.; Duval, V.; Peyré, G.; Poon, C., Geometric properties of solutions to the total variation denoising problem (2016), arXiv preprint
[18] Chan, T. F.; Esedoglu, S., Aspects of total variation regularized \(L^1\) function approximation, SIAM J. Appl. Math., 1817-1837 (2005) · Zbl 1096.94004
[19] Dal Maso, G., Introduction to Γ-Convergence (1993), Birkhäuser · Zbl 0816.49001
[20] Dong, Y.; Hintermüller, M.; Rincon-Camacho, M. M., Automated regularization parameter selection in multi-scale total variation models for image restoration, J. Math. Imaging Vision, 40, 1, 82-104 (2010) · Zbl 1255.68230
[21] Dong, Y.; Hintermüller, M.; Rincon-Camacho, M. M., A multi-scale vectorial \(L^τ\)-TV framework for color image restoration, Int. J. Comput. Vis., 92, 3, 296-307 (2010) · Zbl 1235.68259
[22] Duval, V.; Aujol, J. F.; Gousseau, Y., The TV \(L1\) model: a geometric point of view, Multiscale Model. Simul., 8, 1, 154-189 (2009) · Zbl 1187.94010
[23] Ekeland, I.; Temam, R., Convex Analysis and Variational Problems, vol. 1 (1976), North-Holland · Zbl 0322.90046
[24] Evans, L. C.; Gariepy, R. F., Measure Theory and Fine Properties of Functions (1992), CRC Press: CRC Press Boca Raton, FL · Zbl 0626.49007
[25] Frick, K.; Marnitz, P.; Munk, A., Statistical multiresolution Dantzig estimation in imaging: fundamental concepts and algorithmic framework, Electron. J. Stat., 6, 231-268 (2012) · Zbl 1314.62094
[26] Giusti, E., Minimal Surfaces and Functions of Bounded Variation (1984), Birkhäuser · Zbl 0545.49018
[27] Grasmair, M., The equivalence of the taut string algorithm and BV-regularization, J. Math. Imaging Vision, 27, 1, 59-66 (2007) · Zbl 1478.94041
[28] Hintermüller, M.; Rautenberg, C. N., Optimal selection of the regularization function in a generalized total variation model. Part I: modelling and theory (2016), WIAS Preprint No. 2235
[29] Hintermüller, M.; Rincon-Camacho, M. M., Expected absolute value estimators for a spatially adapted regularization parameter choice rule in \(L^1\)-TV-based image restoration, Inverse Probl., 26, 8, Article 085005 pp. (2010) · Zbl 1194.94031
[30] Hintermüller, M.; Rautenberg, C. N.; Wu, T.; Langer, A., Optimal selection of the regularization function in a generalized total variation model. Part II: algorithm, its analysis and numerical tests (2016), WIAS Preprint No. 2236
[31] Hotz, Y.; Marnitz, P.; Stichtenoth, R.; Davies, L.; Kabluchko, Z.; Munk, A., Locally adaptive image denoising by a statistical multiresolution criterion, Comput. Statist. Data Anal., 56, 3, 543-558 (2012) · Zbl 1239.62116
[32] Jalalzai, K., Discontinuities of the minimizers of the weighted or anisotropic total variation for image reconstruction (2014), arXiv preprint
[33] Jalalzai, K., Some remarks on the staircasing phenomenon in total variation-based image denoising, J. Math. Imaging Vision, 54, 2, 256-268 (2015) · Zbl 1338.94008
[34] Meyer, Y., Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: the Fifteenth Dean Jacqueline B. Lewis Memorial Lectures, vol. 22 (2001), American Mathematical Society · Zbl 0987.35003
[35] Olmsted, J. M.H., Real Variables (1956), Appleton Century-Crofts, Inc.: Appleton Century-Crofts, Inc. New York · Zbl 0098.26407
[36] Osher, S.; Burger, M.; Goldfarb, D.; Xu, J.; Yin, W., An iterative regularization method for total variation-based image restoration, Multiscale Model. Simul., 4, 2, 460-489 (2005) · Zbl 1090.94003
[37] Papafitsoros, K., Novel Higher Order Regularisation Methods for Image Reconstruction (2014), University of Cambridge, PhD thesis · Zbl 1362.94009
[38] Papafitsoros, K.; Bredies, K., A study of the one dimensional total generalised variation regularisation problem, Inverse Probl. Imaging, 9, 2, 511-550 (2015) · Zbl 1336.49044
[39] Ring, W., Structural properties of solutions to total variation regularization problems, ESAIM Math. Model. Numer. Anal., 34, 4, 799-810 (2000) · Zbl 1018.49021
[40] Rudin, L. I.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Phys. D, 60, 1-4, 259-268 (1992) · Zbl 0780.49028
[41] Scherzer, O.; Grasmair, M.; Grossauer, H.; Haltmeier, M.; Lenzen, F., Variational Methods in Imaging (2009), Springer: Springer New York · Zbl 1177.68245
[42] Steidl, G., Combined first and second order variational approaches for image processing, Jahresber. Dtsch. Math.-Ver., 117, 2, 133-160 (2015) · Zbl 1320.49006
[43] Strong, D.; Chan, T., Edge-preserving and scale-dependent properties of total variation regularization, Inverse Probl., 19, 6, S165 (2003) · Zbl 1043.94512
[44] Valkonen, T., The jump set under geometric regularization. Part 1: basic technique and first-order denoising, SIAM J. Math. Anal., 47, 4, 2587-2629 (2015) · Zbl 1325.49053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.