×

The maximum entropy mortality model: forecasting mortality using statistical moments. (English) Zbl 1422.91370

Summary: The age-at-death distribution is a representation of the mortality experience in a population. Although it proves to be highly informative, it is often neglected when it comes to the practice of past or future mortality assessment. We propose an innovative method to mortality modeling and forecasting by making use of the location and shape measures of a density function, i.e. statistical moments. Time series methods for extrapolating a limited number of moments are used and then the reconstruction of the future age-at-death distribution is performed. The predictive power of the method seems to be net superior when compared to the results obtained using classical approaches to extrapolating age-specific-death rates, and the accuracy of the point forecast (MASE) is improved on average by 33% respective to the state-of-the-art, the Lee-Carter model. The method is tested using data from the human mortality database and implemented in a publicly available R package.

MSC:

91B30 Risk theory, insurance (MSC2010)
62P05 Applications of statistics to actuarial sciences and financial mathematics
62M20 Inference from stochastic processes and prediction

Software:

R; Demography; StMoMo
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aitchison, J., The statistical analysis of compositional data, Journal of the Royal Statistical Society. Series B (Methodological), 44, 2, 139-177 (1982) · Zbl 0491.62017 · doi:10.1111/j.2517-6161.1982.tb01195.x
[2] Aitchison, J., A concise guide to compositional data analysis (1986), London: Chapman and Hall, London · Zbl 0688.62004
[3] Basellini, U.; Camarda, C. G., Modelling and forecasting adult age-at-death distributions, Population Studies, 73, 1, 119-138 (2019) · doi:10.1080/00324728.2018.1545918
[4] Bergeron-Boucher, M.-P.; Canudas-Romo, V.; Oeppen, J.; Vaupel, J. W., Coherent forecasts of mortality with compositional data analysis, Demographic Research, 37, 527-566 (2017) · doi:10.4054/DemRes.2017.37.17
[5] Bohk-Ewald, C.; Li, P.; Myrskylä, M., Forecast accuracy hardly improves with method complexity when completing cohort fertility, Proceedings of the National Academy of Sciences, 115, 37, 9187-9192 (2018) · doi:10.1073/pnas.1722364115
[6] Chihara, T. S., An introduction to orthogonal polynomials (1978), New York: Gordon and Breach · Zbl 0389.33008
[7] Dellaportas, P.; Smith, A. F.; Stavropoulos, P., Bayesian analysis of mortality data, Journal of the Royal Statistical Society: Series A (Statistics in Society), 164, 2, 275-291 (2001) · Zbl 1002.91504 · doi:10.1111/1467-985X.00202
[8] Frontini, M., Rodriguez, G. & Seatzu, S. (1990). An algorithm for computing minimum norm solutions of finite moment problem. In Mason, J. C. and Cox, M. G., editors, Algorithms for Approximation II, p. 361-368. London: Chapman and Hall. · Zbl 0743.41020
[9] Gompertz, B., On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies, Philosophical transactions of the Royal Society of London, 115, 513-583 (1825) · doi:10.1098/rstl.1825.0026
[10] Haberman, S., Kaishev, V., Millosaovich, P., Villegas, A., Baxter, S., Gaches, A., Gunnlaugsson, S. & Sison, M. (2014). Longevity Basis Risk: a methodology for assessing basis risk. Institute and Faculty of Actuaries Sessional Research Paper.
[11] Haberman, S.; Renshaw, A., A comparative study of parametric mortality projection models, Insurance: Mathematics and Economics, 48, 1, 35-55 (2011)
[12] Hausdorff, F., Summationsmethoden und momentfolgen. I, Mathematische Zeitschrift, 9, 1-2, 74-109 (1921) · JFM 48.2005.01 · doi:10.1007/BF01378337
[13] Heligman, L.; Pollard, J. H., The age pattern of mortality, Journal of the Institute of Actuaries, 107, 1, 49-80 (1980) · doi:10.1017/S0020268100040257
[14] Human Mortality Database (2018). University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). Data downloaded on 21/08/2018.
[15] Hyndman, R. J. (2017). Demography: forecasting mortality, fertility, migration and population data. R package version 1.20.
[16] Hyndman, R. J. & Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts. Available online at .
[17] Hyndman, R. J.; Koehler, A. B., Another look at measures of forecast accuracy, International journal of forecasting, 22, 4, 679-688 (2006) · doi:10.1016/j.ijforecast.2006.03.001
[18] Hyndman, R. J.; Ullah, M. S., Robust forecasting of mortality and fertility rates: a functional data approach, Computational Statistics and Data Analysis, 51, 10, 4942-4956 (2007) · Zbl 1162.62434 · doi:10.1016/j.csda.2006.07.028
[19] John, V.; Angelov, I.; Öncül, A.; Thévenin, D., Techniques for the reconstruction of a distribution from a finite number of its moments, Chemical Engineering Science, 62, 11, 2890-2904 (2007) · doi:10.1016/j.ces.2007.02.041
[20] Lee, R. D.; Carter, L. R., Modeling and forecasting US mortality, Journal of the American statistical association, 87, 419, 659-671 (1992) · Zbl 1351.62186
[21] Lexis, W. H. R. A. (1879). Sur la durée normale de la vie humaine et sur la théorie de la stabilité des rapports statistiques. Vve. F. Henry.
[22] Li, N.; Lee, R., Coherent mortality forecasts for a group of populations: an extension of the Lee-Carter method, Demography, 42, 3, 575-594 (2005) · doi:10.1353/dem.2005.0021
[23] Makeham, W. M., On the law of mortality, Journal of the Institute of Actuaries (1866-1867), 13, 6, 325-358 (1867) · doi:10.1017/S2046166600003238
[24] Mazzuco, S.; Scarpa, B.; Zanotto, L., A mortality model based on a mixture distribution function, Population Studies, 72, 2, 1-10 (2018) · doi:10.1080/00324728.2018.1439519
[25] Mead, L. R.; Papanicolaou, N., Maximum entropy in the problem of moments, Journal of Mathematical Physics, 25, 8, 2404-2417 (1984) · doi:10.1063/1.526446
[26] Oeppen, J. (2008). Coherent forecasting of multiple-decrement life tables: a test using japanese cause of death data. Paper presented at the European Population Conference 2008, Barcelona, Spain, July 9-12.
[27] Pascariu, M. D. (2018). MortalityLaws: parametric mortality models, life tables and HMD. R package version 1.6.0.
[28] Pearson, K., The chances of death, and other studies in evolution, Folklore Enterprises, Ltd., 8, 4, 370-372 (1897) · JFM 28.0212.11
[29] Preston, S.; Heuveline, P.; Guillot, M., Demography: measuring and modeling population processes (2001), Oxford: Wiley-Blackwell
[30] R Core Team (2018). R: A language and environment for statistical computing [Internet]. Vienna, Austria. R version 3.5.0 (2018-04-23).
[31] Renshaw, A. E.; Haberman, S., A cohort-based extension to the Lee-Carter model for mortality reduction factors, Insurance: Mathematics and Economics, 38, 3, 556-570 (2006) · Zbl 1168.91418
[32] Shannon, C. E., A mathematical theory of communication, Bell System Technical Journal, 27, 3, 379-423 (1948) · Zbl 1154.94303 · doi:10.1002/j.1538-7305.1948.tb01338.x
[33] Shohat, J. A. & Tamarkin, J. D. (1943). The problem of moments. Number 1. American Mathematical Soc. · Zbl 0063.06973
[34] Siler, W., Parameters of mortality in human populations with widely varying life spans, Statistics in medicine, 2, 3, 373-380 (1983) · doi:10.1002/sim.4780020309
[35] Villegas, A., Millossovich, P. & Kaishev, V. (2015). ‘StMoMo’: An R package for stochastic mortality modelling.
[36] Warren, W. (1953). Recent contributions to the mathematical theory of communication. ETC: A Review of General Semantics. 10(4), 261-281.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.