On structure groups of set-theoretic solutions to the Yang-Baxter equation. (English) Zbl 1423.16034

Authors’ abstract: This paper explores the structure groups \(G_{(X,r)}\) of finite non-degenerate set-theoretic solutions \((X,r)\) to the Yang-Baxter equation. Namely, we construct a finite quotient \(\overline {G}_{(X,r)}\) of \(G_{(X,r)}\), generalizing the Coxeter-like groups introduced by Dehornoy for involutive solutions. This yields a finitary setting for testing injectivity: if \(X\) injects into \(G_{(X,r)}\), then it also injects into \(\overline {G}_{(X,r)}\). We shrink every solution to an injective one with the same structure group, and compute the rank of the abelianization of \(G_{(X,r)}\). We show that multipermutation solutions are the only involutive solutions with diffuse structure groups; that only free abelian structure groups are bi-orderable; and that for the structure group of a self-distributive solution, the following conditions are equivalent: bi-orderable, left-orderable, abelian, free abelian and torsion free.


16T25 Yang-Baxter equations
20N02 Sets with a single binary operation (groupoids)
06F15 Ordered groups
Full Text: DOI arXiv


[1] 1.N.Andruskiewitsch and M.Graña, From racks to pointed Hopf algebras, Adv. Math.178(2) (2003), 177-243. · Zbl 1032.16028
[2] 2.D.Bachiller, F.Cedó, E.Jespers and J.Okniński, A family of irretractable square-free solutions of the Yang-Baxter equation, Forum Math.29(6) (2017), 1291-1306. · Zbl 1394.16041
[3] 3.D.Bachiller, F.Cedó and L.Vendramin, A characterization of finite multipermutation solutions of the Yang-Baxter equation, Publ. Math.62(6) (2018), 641-649. · Zbl 1432.16030
[4] 4.E.Brieskorn, Automorphic sets and braids and singularities, in Braids (Santa Cruz, CA, 1986), Contemporary Mathematics, Volume 78, pp. 45-115 (American Mathematical Society, Providence, RI, 1988). · Zbl 0716.20017
[5] 5.F.Cedó, T.Gateva-Ivanova and A.Smoktunowicz, On the Yang-Baxter equation and left nilpotent left braces, J. Pure Appl. Algebra221 (2017), 751-756. · Zbl 1397.16033
[6] 6.F.Cedó, E.Jespers and Á.del Río, Involutive Yang-Baxter groups, Trans. Amer. Math. Soc.362(5) (2010), 2541-2558. · Zbl 1188.81115
[7] 7.F.Cedó, E.Jespers and J.Okniński, Retractability of set theoretic solutions of the Yang-Baxter equation, Adv. Math.224(6) (2010), 2472-2484. · Zbl 1192.81202
[8] 8.F.Chouraqui, Garside groups and Yang-Baxter equation, Commun. Algebra38(12) (2010), 4441-4460. · Zbl 1216.16023
[9] 9.F.Chouraqui, Left orders in Garside groups, Int. J. Algebra Comput.26(7) (2016), 1349-1359. · Zbl 1357.20015
[10] 10.F.Chouraqui and E.Godelle, Finite quotients of groups of I-type, Adv. Math.258 (2014), 46-68. · Zbl 1344.20051
[11] 11.P.Dehornoy, Set-theoretic solutions of the Yang-Baxter equation, RC-calculus, and Garside germs, Adv. Math.282 (2015), 93-127. · Zbl 1326.20039
[12] 12.P.Dehornoy, I.Dynnikov, D.Rolfsen and B.Wiest, Ordering braids, Mathematical Surveys and Monographs, Volume 148 (American Mathematical Society, Providence, RI, 2008). · Zbl 1163.20024
[13] 13.B.Deroin, A.Navas and C.Rivas, Groups, orders, and dynamics, preprint (arxiv:1408.5805, 2014).
[14] 14.V. G.Drinfel’d, On some unsolved problems in quantum group theory, in Quantum groups (Leningrad, 1990), Lecture Notes in Mathematics, Volume 1510, pp. 1-8 (Springer, Berlin, 1992). · Zbl 0765.17014
[15] 15.P.Etingof, T.Schedler and A.Soloviev, Set-theoretical solutions to the quantum Yang-Baxter equation, Duke Math. J.100(2) (1999), 169-209. · Zbl 0969.81030
[16] 16.R.Fenn, C.Rourke and B.Sanderson, An introduction to species and the rack space, in Topics in knot theory (Erzurum, 1992), NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, Volume 399, pp. 33-55 (Kluwer Academic Publishers, Dordrecht, 1993). · Zbl 0828.57005
[17] 17.T.Gateva-Ivanova and P.Cameron, Multipermutation solutions of the Yang-Baxter equation, Commun. Math. Phys.309(3) (2012), 583-621. · Zbl 1247.81211
[18] 18.T.Gateva-Ivanova and S.Majid, Matched pairs approach to set theoretic solutions of the Yang-Baxter equation, J. Algebra319(4) (2008), 1462-1529. · Zbl 1140.16016
[19] 19.T.Gateva-Ivanova and M.Van den Bergh, Semigroups of I-type, J. Algebra206(1) (1998), 97-112. · Zbl 0944.20049
[20] 20.M.Graña, I.Heckenberger and L.Vendramin, Nichols algebras of group type with many quadratic relations, Adv. Math.227(5) (2011), 1956-1989. · Zbl 1231.16024
[21] 21.L.Guarnieri and L.Vendramin, Skew braces and the Yang-Baxter equation, Math. Comput.86(307) (2017), 2519-2534. · Zbl 1371.16037
[22] 22.E.Jespers and J.Okniński, Monoids and groups of I-type, Algebr. Represent. Theory8(5) (2005), 709-729. · Zbl 1091.20024
[23] 23.E.Jespers and J.Okniński, Noetherian semigroup algebras, Algebras and Applications, Volume 7 (Springer, Dordrecht, 2007). · Zbl 1178.16025
[24] 24.S.Kionke and J.Raimbault, On geometric aspects of diffuse groups, Doc. Math.21 (2016), 873-915. With an appendix by Nathan Dunfield. · Zbl 1410.22004
[25] 25.V.Lebed and L.Vendramin, Homology of left non-degenerate set-theoretic solutions to the Yang-Baxter equation, Adv. Math.304 (2017), 1219-1261. · Zbl 1356.16027
[26] 26.P.Linnell and D.Witte Morris, Amenable groups with a locally invariant order are locally indicable, Groups Geom. Dyn.8(2) (2014), 467-478. · Zbl 1343.20042
[27] 27.J.-H.Lu, M.Yan and Y.-C.Zhu, On the set-theoretical Yang-Baxter equation, Duke Math. J.104(1) (2000), 1-18. · Zbl 0960.16043
[28] 28.A. I.Mal’cev, On isomorphic matrix representations of infinite groups of matrices, Mat. Sb.8(1940) (2000), 405-422 (in Russian); Amer. Math. Soc. Transl. (2)45 (1965), 1-18. · Zbl 0158.02905
[29] 29.S.Nelson and J.Vo, Matrices and finite biquandles, Homology Homotopy Appl.8(2) (2006), 51-73. · Zbl 1111.57009
[30] 30.J. J.Rotman, An introduction to the theory of groups, Graduate Texts in Mathematics, Volume 148, 4th edn (Springer-Verlag, New York, 1995). · Zbl 0810.20001
[31] 31.W.Rump, Generalized radical rings, unknotted biquandles, and quantum groups, Colloq. Math.109(1) (2007), 85-100. · Zbl 1117.81084
[32] 32.H.Short and B.Wiest, Orderings of mapping class groups after Thurston, Enseign. Math. (2)46(3-4) (2000), 279-312. · Zbl 1023.57013
[33] 33.A.Smoktunowicz and L.Vendramin, On skew braces (with an appendix by N. Byott and L. Vendramin), J. Comb. Algebra2(1) (2018), 47-86. · Zbl 1416.16037
[34] 34.A.Soloviev, Non-unitary set-theoretical solutions to the quantum Yang-Baxter equation, Math. Res. Lett.7(5-6) (2000), 577-596. · Zbl 1046.81054
[35] 35.M.Szymik, Permutations, power operations, and the center of the category of racks, Commun. Algebra46(1) (2018), 230-240. · Zbl 1396.57024
[36] 36.L.Vendramin, Extensions of set-theoretic solutions of the Yang-Baxter equation and a conjecture of Gateva-Ivanova, J. Pure Appl. Algebra220(5) (2016), 2064-2076. · Zbl 1337.16028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.