×

Asymptotic periodic solutions of some generalized Burgers equations. (English) Zbl 1424.35231

Summary: In this paper, we construct asymptotic periodic solutions of some generalized Burgers equations using a perturbative approach. These large time asymptotics (constructed) are compared with relevant numerical solutions obtained by a finite difference scheme.

MSC:

35K59 Quasilinear parabolic equations
35B10 Periodic solutions to PDEs
35B40 Asymptotic behavior of solutions to PDEs
35Q53 KdV equations (Korteweg-de Vries equations)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M Abramowitz, I A Stegun (eds.). Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover, New York, 1972. · Zbl 0543.33001
[2] L C Andrews. Special functions for engineers and applied mathematicians, Macmillan Publishing Company, New York, 1985.
[3] C M Bender, S A Orszag. Advanced mathematical methods for scientists and engineers, McGraw-Hill Book Company, Singapore, 1978. · Zbl 0417.34001
[4] T F Chen, H A Levine, P E Sacks. Analysis of a convective reaction – diffusion equation, Nonlinear Anal TMA, 1988, 12(12): 1349-1370. · Zbl 0685.35016 · doi:10.1016/0362-546X(88)90083-1
[5] C N Dawson. Godunov-mixed methods for advective flow problems in one space dimension, SIAM J Numer Anal, 1991, 28(5): 1282-1309. · Zbl 0741.65068 · doi:10.1137/0728068
[6] Y Duan, L Kong, R Zhang, A lattice Boltzmann model for the generalized Burgers-Huxley equation, Physica A, 2012, 391: 625-632. · doi:10.1016/j.physa.2011.08.034
[7] Y Duan, R Liu, Y Jiang. Lattice Boltzmann model for the modified Burgers’ equation, Appl Math Comput, 2008, 202: 489-497. · Zbl 1143.76050
[8] Grundy, R. E.; Sachdev, P. L.; Dawson, C. N.; Sachdev, P. L (ed.); Grundy, R. E (ed.), Large time solution of an initial value problem for a generalized Burgers equation, 68-83 (1994), New Delhi
[9] M Kato. Large time behavior of solutions to the generalized Burgers equations, Osaka J Math, 2007, 44: 923-943. · Zbl 1132.35311
[10] H A Levine, L E Payne, P E Sacks, B Straughan. Analysis of a convective reaction – diffusion equation II, SIAM J Math Anal, 1989, 20(1): 133-147. · Zbl 0702.35126 · doi:10.1137/0520010
[11] A Mishra, R Kumar. Exact solutions of variable coefficient nonlinear diffusion – reaction equations with a nonlinear convective term, Phys Lett A, 2010, 374: 2921-2924. · Zbl 1237.35096 · doi:10.1016/j.physleta.2010.03.039
[12] Moritz, H.; Grafarend, E. W (ed.); Krumm, F. W (ed.); Schwarze, V. S (ed.), The strange behavior of asymptotic series in mathematics, celestial mechanics and physical geodesy, 371-377 (2003), Berlin Heidelberg · doi:10.1007/978-3-662-05296-9_38
[13] J J C Nimmo, D G Crighton. Bäcklund transformations for nonlinear parabolic equations: the general results, Proc R Soc Lond A, 1982, 384: 381-401. · Zbl 0501.35044 · doi:10.1098/rspa.1982.0164
[14] Ö Oruç, F Bulut, A Esen. A Haar wavelet-finite difference hybrid method for the numerical solution of the modified Burgers’ equation, J Math Chem, 2015, 53: 1592-1607. · Zbl 1331.65123 · doi:10.1007/s10910-015-0507-5
[15] M A Pinsky. Partial differential equations and boundary-value problems with applications, American Mathematical Society, Providence, Rhode Island, 2011. · Zbl 1242.35004
[16] O A Pocheketa, R O Popovych, O O Vaneeva. Group classification and exact solutions of variable-coefficient generalized Burgers equations with linear damping, Appl Math Comput, 2014, 243: 232-244. · Zbl 1335.35006
[17] Ch S Rao, E Satyanarayana. Asymptotic N-wave solutions of the nonplanar Burgers equation, Stud Appl Math, 2008, 121: 199-221. · Zbl 1190.35187 · doi:10.1111/j.1467-9590.2008.00411.x
[18] P L Sachdev. A generalised Cole-Hopf transformation for nonlinear parabolic and hyperbolic equations, J Appl Math Phys, 1978, 29(6): 963-970. · Zbl 0399.35094
[19] P L Sachdev. Self-similarity and beyond. Exact solutions of nonlinear problems, Chapman & Hall/CRC, Boca Raton, Florida, 2000. · Zbl 0961.35001 · doi:10.1201/9781420035711
[20] P L Sachdev, B O Enflo, Ch S Rao, B M Vaganan, P Goyal. Large-time asymptotics for periodic solutions of some generalized Burgers equations, Stud Appl Math, 2003, 110: 181-204. · Zbl 1141.35453 · doi:10.1111/1467-9590.00236
[21] P L Sachdev, Ch S Rao, B O Enflo. Large-time asymptotics for periodic solutions of the modified Burgers equation, Stud Appl Math, 2005, 114: 307-323. · Zbl 1145.35450 · doi:10.1111/j.0022-2526.2005.01551.x
[22] Smriti Nath. Large time asymptotics to solutions of some generalized Burgers equations, Ph. D thesis, IIT Madras, India, 2016.
[23] A S Tersenov. On the generalized Burgers equation, Nonlinear Differ Equ Appl, 2010, 17: 437-452. · Zbl 1207.35194 · doi:10.1007/s00030-010-0061-6
[24] A S Tersenov. On the first boundary value problem for quasilinear parabolic equations with two independent variables, Arch Rational Mech Anal, 2000, 152: 81-92. · Zbl 0962.35094 · doi:10.1007/s002050000074
[25] Ar S Tersenov. On solvability of some boundary value problems for a class of quasilinear parabolic equations, Sib Math J, 1999, 40(5): 972-980. · Zbl 0933.35102 · doi:10.1007/BF02674727
[26] B M Vaganan, S Padmasekaran. Large-time asymptotics for periodic solutions of nonplanar Burgers equation with linear damping, Int J Pure Appl Math, 2007, 41(3): 301-316. · Zbl 1132.35458
[27] B M Vaganan, S Padmasekaran. Large time asymptotic behaviors for periodic solutions of generalized Burgers equations with spherical symmetry or linear damping, Stud Appl Math, 2009, 124: 1-18. · Zbl 1180.35469 · doi:10.1111/j.1467-9590.2009.00456.x
[28] Vaganan, B. M.; Padmasekaran, S.; Vaganan, B. M (ed.), Large-time asymptotics for periodic solutions of modified nonplanar and modified nonplanar damped Burgers equations, 50-59 (2006), New Delhi
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.