×

\(E_2\) structures and derived Koszul duality in string topology. (English) Zbl 1426.55011

R. L. Cohen and J. D. S. Jones [Math. Ann. 324, No. 4, 773–798 (2002; Zbl 1025.55005)] have given a homotopical interpretation of the loop product in string topology due to Chas and Sullivan by relating a certain Thom spectrum of the free loop space \(LM\) of a closed orientable manifold \(M\) with the topological Hochschild cohomology \(\text{THC}(DM)\) of the Spanier-Whitehead dual \(DM\). The homology of \(\text{THC}(DM)\) is canonically isomorphic to the Hochschild cohomology \(HH^*(C^*(M))\) of the cochain algebra \(C^*(M)\). Cohen-Jones in [loc. cit.] produced an isomorphism between the loop homology of \(M\) with the loop product and the Hochschild cohomology with the cup product.
In [J. Pure Appl. Algebra 199, No. 1–3, 43–59 (2005; Zbl 1076.55003)], Y. Félix et al. have constructed an isomorphism of Gerstenhaber algebras \(HH^*(C^*(M))\cong HH^*(\overline{\Omega}C_*(M))\) when \(M\) is simply connected, where \(\overline\Omega C_*(M)\) denotes the cobar construction. The homology of \(\text{THC}(\Sigma_+^\infty \Omega M)\) is isomorphic to \(HH^*(\overline{\Omega}C_*(M))\). Therefore, a spectral model version of the result due to Félix, Menichi and Thomas is expected. In the paper under review, Theorem A shows that for a simply connected finite cell complex \(X\), the topological Hochschild cohomologies \(\text{THC}(DX)\) and \(\text{THC}(\Sigma_+^\infty \Omega X)\) are weakly equivalent as \(E_2\) ring spectra.
The paper considers a generalization for \(\text{THC}\) in the setting of small spectral categories which generalize associative ring spectra. The small category is enriched over spectra. More precisely, it has a bi-indexed spectrum as a set of morphisms. The topological Hochschild cohomology of a small spectral category \({\mathcal C}\) is defined by \(\text{THC}({\mathcal C}) = \text{CC}({\mathcal C}^{\text{Cell}, \Omega})\) with the Hochschild-Mitchell construction \(\text{CC}\) and a cofibrant-fibrant replacement \({\mathcal C}^{\text{Cell}, \Omega}\) of \({\mathcal C}\) in a topologically enriched closed model category.
Let \({\mathcal C}\) and \({\mathcal D}\) be small spectral categories and \({\mathcal M}\) a \(({\mathcal C}, {\mathcal D})\)-bimodule. Then there are canonical maps in the category of homotopical \(({\mathcal C}, {\mathcal C})\)-bimodules and homotopical \(({\mathcal D}, {\mathcal D})\)-bimodules \[ {\mathcal C} \to {\mathbb R}\text{Hom}_{{\mathcal D}^{\text{op}}}({\mathcal M}, {\mathcal M}) \ \ \text{and} \ \ {\mathcal D} \to {\mathbb R}\text{Hom}_{{\mathcal C}}({\mathcal M}, {\mathcal M}), \] respectively. By definition, we say that \({\mathcal M}\) satisfies the double centralizer condition when these both maps are weak equivalences and the single centralizer condition for \({\mathcal D}\) when the second map (out of \({\mathcal D}\)) is a weak equivalence. Tying in the double centralizer condition with weak equivalences between the Hochschild-Mitchell constructions for certain small spectral categories (Theorem 5.7), the authors deduce the following result which is regarded as the spectral version of the main theorem of B. Keller [“Derived invariance of higher structures on the Hochschild complex”, Preprint, https://webusers.imj-prg.fr/~bernhard.keller/publ/dih.pdf].
Theorem E. Let \({\mathcal C}\) and \({\mathcal D}\) be small spectral categories and \({\mathcal M}\) a \(({\mathcal C}, {\mathcal D})\)-bimodule that satisfies the single centralizer condition for \({\mathcal D}\), then there exists a canonical map \(\text{THC}({\mathcal C}) \to \text{THC}({\mathcal D})\) in the homotopy category of \(E_2\) ring spectra. If \({\mathcal M}\) satisfies the double centralizer condition, then \(\text{THC}({\mathcal C}) \to \text{THC}({\mathcal D})\) is an isomorphism in the homotopy category of \(E_2\) ring spectra.
Theorem A follows from Theorem E as an immediate corollary.

MSC:

55P50 String topology
16D90 Module categories in associative algebras
16E40 (Co)homology of rings and associative algebras (e.g., Hochschild, cyclic, dihedral, etc.)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] 10.2140/gt.2010.14.1569 · Zbl 1201.53087 · doi:10.2140/gt.2010.14.1569
[2] 10.4310/JSG.2012.v10.n1.a3 · Zbl 1298.53092 · doi:10.4310/JSG.2012.v10.n1.a3
[3] 10.1017/S0305004103007138 · Zbl 1056.55006 · doi:10.1017/S0305004103007138
[4] 10.1090/conm/504/09875 · doi:10.1090/conm/504/09875
[5] 10.2140/gt.2013.17.733 · Zbl 1267.19001 · doi:10.2140/gt.2013.17.733
[6] 10.1112/jtopol/jtr003 · Zbl 1236.19001 · doi:10.1112/jtopol/jtr003
[7] 10.2140/gt.2012.16.1053 · Zbl 1282.19004 · doi:10.2140/gt.2012.16.1053
[8] 10.1007/s00208-002-0362-0 · Zbl 1025.55005 · doi:10.1007/s00208-002-0362-0
[9] 10.1016/j.aim.2005.11.004 · Zbl 1155.55302 · doi:10.1016/j.aim.2005.11.004
[10] 10.1016/j.jpaa.2004.11.004 · Zbl 1076.55003 · doi:10.1016/j.jpaa.2004.11.004
[11] 10.1155/S1073792895000110 · Zbl 0827.18004 · doi:10.1155/S1073792895000110
[12] 10.1016/j.jpaa.2003.10.030 · Zbl 1060.16010 · doi:10.1016/j.jpaa.2003.10.030
[13] ; Kontsevich, Conférence Moshé Flato, I. Math. Phys. Stud., 21, 255 (2000)
[14] 10.1016/j.jpaa.2006.10.002 · Zbl 1123.18010 · doi:10.1016/j.jpaa.2006.10.002
[15] 10.1515/9781400830558 · Zbl 1175.18001 · doi:10.1515/9781400830558
[16] 10.1007/978-1-4612-9839-7 · doi:10.1007/978-1-4612-9839-7
[17] 10.1112/S0024611501012692 · Zbl 1017.55004 · doi:10.1112/S0024611501012692
[18] 10.1090/surv/132 · doi:10.1090/surv/132
[19] 10.1090/conm/293/04948 · doi:10.1090/conm/293/04948
[20] 10.1353/ajm.2004.0038 · Zbl 1064.55008 · doi:10.1353/ajm.2004.0038
[21] 10.1017/CBO9781107261457 · Zbl 1317.18001 · doi:10.1017/CBO9781107261457
[22] 10.2140/agt.2003.3.287 · Zbl 1028.55013 · doi:10.2140/agt.2003.3.287
[23] 10.1016/S0040-9383(02)00006-X · Zbl 1013.55005 · doi:10.1016/S0040-9383(02)00006-X
[24] ; Seidel, Proceedings of the International Congress of Mathematicians, II, 351 (2002)
[25] 10.1007/s40062-018-0199-1 · Zbl 1432.55018 · doi:10.1007/s40062-018-0199-1
[26] 10.1023/B:MATH.0000017651.12703.a1 · Zbl 1048.18007 · doi:10.1023/B:MATH.0000017651.12703.a1
[27] 10.1007/978-94-015-1276-3 · doi:10.1007/978-94-015-1276-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.