Program iterations method and relaxation of a pursuit-evasion differential game. (English) Zbl 1426.91037

Kondratenko, Yuriy P. (ed.) et al., Advanced control techniques in complex engineering systems: theory and applications. Dedicated to Professor Vsevolod M. Kuntsevich. Cham: Springer. Stud. Syst. Decis. Control 203, 129-161 (2019).
Summary: We consider special case of nonlinear zero-sum pursuit-evasion differential game. This game is defined by two closed sets – target set and one defining state constraints. We find an optimal non-anticipating strategy for player I (the pursuer). Namely, we construct his successful solvability set specified by limit function of the iterative procedure in space of positions. For positions outside of the successful solvability set, we consider relaxation of our game by determining the smallest size of a neighborhoods of two mentioned sets, for which the pursuer can solve his problem. Then, we construct his successful solvability set in terms of those neighborhoods.
For the entire collection see [Zbl 1416.93005].


91A24 Positional games (pursuit and evasion, etc.)
Full Text: DOI


[1] Isaacs, R.: Differential Games. Wiley, New York (1965) · Zbl 0125.38001
[2] Pontryagin, L.S.: Linear differential games of pursuit. Mat. Sb. (N.S.) 112(154):3(7), 307-330 (1980) · Zbl 0445.90118
[3] Krasovskii, N.N.: Igrovye zadachi o vstreche dvizhenii. [Game problems on the encounter of motions]. Moscow, Nauka Publ., 1970, 420 p. (in Russian)
[4] Pshenichnii, B.N.: The structure of differential games. Sov. Math. Dokl. 10, 70-72
[5] Kuntsevich, V.M., Kuntsevich, A.V.: Optimal Control over the approach of conflicting moving objects under uncertainty. Cybern. Syst. Anal. 38, 230-237 (2002). https://doi.org/10.1023/A:1016395429276 · Zbl 1023.49030
[6] Kuntsevich, V.M.: Control Under Uncertainty: Guaranteed Results in Control and Identification Problems. Naukova Dumka, Kyiv (2006). (in Russian)
[7] Kuntsevich, V.M., Gubarev, V.F., Kondratenko, Y.P., Lebedev, D.V., Lysenko, V.P. (eds.): Control Systems: Theory and Applications. Series in Automation, Control and Robotics. River Publishers (2018)
[8] Krasovskii, N.N., Subbotin, A.I.: An alternative for the game problem of convergence. J. Appl. Math. Mech. 34(6), 948-965 (1970). https://doi.org/10.1016/0021-8928(70)90158-9 · Zbl 0241.90071
[9] Krasovsky, N.N., Subbotin, A.I.: Game-Theoretical Control Problems. Springer, New York (1988)
[10] Kryazhimskii, A.V.: On the theory of positional differential games of approach-evasion. Sov. Math. Dokl. 19(2), 408-412 (1978)
[11] Roxin, E.: Axiomatic approach in differential games. J. Optim. Theory Appl. 3, 153 (1969). https://doi.org/10.1007/BF00929440 · Zbl 0175.10504
[12] Elliott, R.J., Kalton, N.J.: Values in differential games. Bull. Am. Math. Soc. 78(3), 427-431 (1972) · Zbl 0253.90074
[13] Chentsov, A.G.: On a game problem of guidance with information memory. Sov. Math. Dokl. 17, 411-414 (1976) · Zbl 0395.90106
[14] Chentsov, A.G.: On a game problem of converging at a given instant of time. Math. USSR-Sb. 28(3), 353-376 (1976). https://doi.org/10.1070/SM1976v028n03ABEH001657 · Zbl 0371.90136
[15] Subbotin, A.I., Chentsov, A.G.: Optimizatsiya garantii v zadachakh upravleniya [Optimization of guarantee in control problems]. Moscow, Nauka Publ., 1981, 288 p. (in Russian) · Zbl 0542.90106
[16] Ushakov, V.N., Ershov, A.A.: On the solution of control problems with fixed terminal time. Vestn. Udmurt. Univ. Mat. Mekh. Kompyut. Nauki 26(4), 543-564 (2016) (in Russian). https://doi.org/10.20537/vm160409 · Zbl 1371.49021
[17] Ushakov, V.N., Matviychuk A.R.: Towards solution of control problems of nonlinear systems on a finite time interval. Izv. IMI UdGU (46) no. 2, 202-215 (2015). (in Russian) · Zbl 1338.93066
[18] Ushakov, V.N., Ukhobotov, V.I., Ushakov, A.V., Parshikov, G.V.: On solving approach problems for control systems. Proc. Steklov Inst. Math. 291(1), 263-278 (2015). https://doi.org/10.1134/S0081543815080210 · Zbl 1333.93046
[19] Chikrii, A.A.: Conflict-Controlled Processes, p. 424. Springer Science and Busines Media, Boston, London, Dordrecht (2013)
[20] Krasovskii, N.N.: A differential game of approach and evasion. I. Cybernetics 11(2), 189-203 (1973)
[21] Krasovskii, N.N.: A differential game of approach and evasion. II. Cybernetics 11(3), 376-394 (1973)
[22] Chentsov, A.G.: The structure of a certain game-theoretic approach problem. Sov. Math. Dokl. 16(5), 1404-1408 (1975) · Zbl 0351.90094
[23] Chistyakov, S.V.: On solutions for game problems of pursuit. Prikl. Mat. Mekh. 41(5), 825-832 (1977). (in Russian)
[24] Ukhobotov, V.I.: Construction of a stable bridge for a class of linear games. J. Appl. Math. Mech. 41(2), 350-354 (1977). https://doi.org/10.1016/0021-8928(77)90021-1 · Zbl 0408.90098
[25] Chentsov, A.G.: Metod programmnykh iteratsii dlya differentsialnoi igry sblizheniya-ukloneniya [The method of program iterations for a differential approach-evasion game]. Sverdlovsk, 1979. Available from VINITI, no. 1933-79, 102 p
[26] Chentsov, A.G.: Stability iterations and an evasion problem with a constraint on the number of switchings. Trudy Inst. Mat. i Mekh. UrO RAN 23(2), 285-302 (2017) (in Russian). https://doi.org/10.21538/0134-4889-2017-23-2-285-302
[27] Chentsov, A.G.: O zadache upravleniya s ogranichennym chislom pereklyuchenii [On a control problem with a bounded number of switchings]. Sverdlovsk, 1987. Available from VINITI, no. 4942-B87, 44 p (in Russian)
[28] Chentsov, A.G.: O differentsialnykh igrakh s ogranicheniem na chislo korrektsii, 2 [On differential games with restriction on the number of corrections, 2]. Sverdlovsk, 1980. Available from VINITI, no. 5406-80, 55 p. (in Russian)
[29] Chentsov, A.G., Khachay, D.M.: Relaxation of the pursuit-evasion differential game and iterative methods. Trudy Inst. Mat. i Mekh. UrO RAN 24(4), 246-269 (in Russian). https://doi.org/10.21538/0134-4889-2018-24-4-246-269 · Zbl 1480.91044
[30] Neveu, J.: Mathematical foundations of the calculus of probability. San Francisco: Holden-Day, 1965, 223 p. Translated to Russian under the title Matematicheskie osnovy teorii veroyatnostei. Moscow: Mir Publ., 1969, 309 p
[31] Billingsley, P.: Convergence of probability measures. N-Y: Wiley, 1968, 253 p. ISBN: 0471072427. Translated to Russian under the title Skhodimost veroyatnostnykh mer. Moscow: Nauka Publ., 1977, 352 p
[32] Dieudonne, J.: Foundations of modern analysis. N Y: Acad. Press Inc., 1960, 361 p. Translated to Russian under the title Osnovy sovremennogo analiza. Moscow: Mir Publ., 1964, 430 p · Zbl 0100.04201
[33] Chentsov, A.G.: The program iteration method in a game problem of guidance. Proc. Steklov Inst. Math. 297(suppl. 1), 43-61 (2017). https://doi.org/10.1134/S0081543817050066 · Zbl 1377.49041
[34] Chentsov, A.G.: On the game problem of convergence at a given moment of time. Math. USSR-Izv. 12(2), 426-437 (1978). https://doi.org/10.1070/IM1978v012n02ABEH001985 · Zbl 0423.90096
[35] Nikitin, F.F., Chistyakov, S.V.: On zero-sum two-person differential games of infinite duration. Vestn. St. Petersbg. Univ. Math. 37(3), 28-32 (2004) · Zbl 1107.91027
[36] Chistyakov, S.V.: Programmed iterations and universal \(\varepsilon \)-optimal strategies in a positional differential game. Sov. Math. Dokl. 44(1), 354-357 (1992) · Zbl 0770.90092
[37] Chistyakov, S.V.: On functional equations in games of encounter at a prescribed instant. J. Appl. Math. Mech. 46(5), 704-706 (1982). https://doi.org/10.1016/0021-8928(82)90023-5 · Zbl 0529.90109
[38] Chentsov, A.G.: Iterations of stability and the evasion problem with a constraint on the number of switchings of the formed control. Izv. IMI UdGU 49, 17-54 (2017) (in Russian) · Zbl 1387.37080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.