Kumar, Alok; Vandana Approximation properties of modified Srivastava-Gupta operators based on certain parameter. (English) Zbl 1431.41010 Bol. Soc. Parana. Mat. (3) 38, No. 1, 41-53 (2020). Summary: In the present article, we give a modified form of generalized Srivastava-Gupta operators based on certain parameter which preserve the constant as well as linear functions. First, we estimate moments of the operators and then prove Voronovskaja type theorem. Next, direct approximation theorem, rate of convergence and weighted approximation by these operators in terms of modulus of continuity are studied. Then, we obtain point-wise estimate using the Lipschitz type maximal function. Finaly, we study the \(A\)-statistical convergence of these operators. Cited in 3 Documents MSC: 41A25 Rate of convergence, degree of approximation 26A15 Continuity and related questions (modulus of continuity, semicontinuity, discontinuities, etc.) for real functions in one variable 40A35 Ideal and statistical convergence Keywords:Srivastava-Gupta operators; modulus of continuity; weighted approximation; rate of convergence; \(A\)-statistical convergence PDF BibTeX XML Cite \textit{A. Kumar} and \textit{Vandana}, Bol. Soc. Parana. Mat. (3) 38, No. 1, 41--53 (2020; Zbl 1431.41010) Full Text: Link References: [1] T. Acar, L.N. Mishra and V.N. Mishra, Simultaneous Approximation for Generalized Srivastava-Gupta Operators, Journal of Function Spaces, Volume 2015, Article ID 936308, 11 pages. · Zbl 1321.41024 [2] G.A. Anastassiou and O. Duman, A Baskakov type generalization of statistical Korovkin theory, J. Math. Anal. Appl., 340(2008), 476-486. · Zbl 1133.41004 [3] N. Deo, Faster rate of convergence on Srivastava-Gupta operators, Appl. Math. Comput., 218(2012), 10486-10491. · Zbl 1259.41031 [4] R.A. DeVore and G.G. Lorentz, Constructive Approximation, Springer, Berlin (1993). · Zbl 0797.41016 [5] A.D. Gadjiev, Theorems of the type of P. P. korovkin’s theorems, Matematicheskie Zametki, 20(5) (1976), 781-786. [6] A.D. Gadjiev, R.O. Efendiyev and E. Ibikli, On Korovkin type theorem in the space of locally integrable functions, Czechoslovak Math. J., 1(128) (2003), 45-53. · Zbl 1013.41011 [7] A.D. Gadjiev and C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain. J. Math., 32(1) (2002), 129-138. · Zbl 1039.41018 [8] A.R. Gairola, Deepmala and L.N. Mishra, On theq-derivatives of a certain linear positive operators, Iranian Journal of Science and Technology, Transactions A: Science, (2017), DOI 10.1007/s40995-017-0227-8 · Zbl 1397.41005 [9] A.R. Gairola, Deepmala and L.N. Mishra, Rate of Approximation by Finite Iterates of qDurrmeyer Operators, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. (April-June 2016) 86(2):229-234 (2016). doi: 10.1007/s40010-016-0267-z · Zbl 1381.41020 [10] R.B. Gandhi, Deepmala and V.N. Mishra, Local and global results for modified Sz´aszMirakjan operators, Math. Method. Appl. Sci., Vol. 40, Issue 7, (2017), pp. 2491-2504. DOI: 10.1002/mma.4171. · Zbl 1364.41014 [11] V. Gupta and M.K. Gupta, Rate of convergence for certain families of summation-integral type operators, J. Math. Anal. Appl., 296(2) (2004), 608-618. · Zbl 1064.41016 [12] N. Ispir and I. Yuksel, On the Bezier variant of Srivastava-Gupta operators, Appl. Math., E-Notes 5(2005), 129-137. · Zbl 1084.41018 [13] N. Ispir and V. Gupta,A-statistical approximation by the generalized Kantorovich-Bernstein type rational operators, Southeast Asian Bull. Math., 32(2008), 87-97. · Zbl 1199.41131 [14] A. Kumar, V.N. Mishra and D. Tapiawala, Stancu type generalization of modified SrivastavaGupta operators, Eur. J. Pure Appl. Math, Vol. 10, (2017), no. 4, 890-907. . · Zbl 1370.41027 [15] A. Kumar and L.N. Mishra, Approximation by modified Jain-Baskakov-Stancu operators, Tbilisi Mathematical Journal, 10(2) (2017), pp. 185-199. · Zbl 1371.41021 [16] A. Kumar, Voronovskaja type asymptotic approximation by general Gamma type operators, Int. J. of Mathematics and its Applications, 3(4-B) (2015) 71-78. [17] A. Kumar and D.K. Vishwakarma, Global approximation theorems for general Gamma type operators, Int. J. of Adv. in Appl. Math. and Mech., 3(2) (2015) 77-83. · Zbl 1359.41007 [18] A. Kumar, Artee and D.K. Vishwakarma, Approximation properties of general gamma type operators in polynomial weighted space, Int. J. of Adv. in Appl. Math. and Mech., 4(3) (2017) 7-13. · Zbl 1390.41032 [19] A. Kajla and P.N. Agrawal, Sz´asz-Kantorovich Type Operators Based on Charlier Polynomials, KYUNGPOOK Math. J., 56(2016), 877-897. · Zbl 1379.26006 [20] J.P. King, Positive linear operators which preservex2, Acta Math. Hungar., 99(3) (2003), 203-208. · Zbl 1027.41028 [21] B. Lenze, On Lipschitz type maximal functions and their smoothness spaces, Nederl. Akad. Indag. Math., 50(1988), 53-63. · Zbl 0652.42004 [22] P. Maheshwari (Sharma), On modified Srivastava-Gupta operators, Filomat, 29:6 (2015), 1173-1177. · Zbl 1474.41060 [23] V.N. Mishra, P. Sharma and M. Birou, Approximation by Modified Jain-Baskakov Operators, arXiv:1508.05309v2 [math.FA] 9 Sep 2015. · Zbl 1448.41022 [24] V.N. Mishra, P. Sharma and L.N. Mishra, On statistical approximation properties ofqBaskakov-S´zasz-Stancu operators, Journal of Egyptian Mathematical Society, Vol. 24, Issue 3, 2016, pp.396-401. DOI:10.1016/j.joems.2015.07.005. · Zbl 1342.41030 [25] V.N. Mishra, K. Khatri and L.N. Mishra, Statistical approximation by Kantorovich-type discrete q-Beta operators, Adv. Differ. Equ. Vol., 2013 (2013), Art ID 345. · Zbl 1391.41008 [26] V.N. Mishra, K. Khatri and L.N. Mishra, On Simultaneous Approximation for BaskakovDurrmeyer-Stancu type operators, Journal of Ultra Scientist of Physical Sciences, Vol. 24, No. (3) A, 2012, pp. 567-577. · Zbl 1339.41021 [27] V.N. Mishra, K. Khatri, L.N. Mishra and Deepmala, Inverse result in simultaneous approximation by Baskakov-Durrmeyer-Stancu operators, Journal of Inequalities and Applications 2013, 2013:586. doi:10.1186/1029-242X-2013-586. · Zbl 1295.41013 [28] V.N. Mishra, R.B. Gandhi and R.N. Mohapatraa, Summation-Integral type modification of S´zasz-Mirakjan-Stancu operators, J. Numer. Anal. Approx. Theory, vol. 45 (2016) no.1, pp. 27-36. · Zbl 1399.41047 [29] P. Patel and V.N. Mishra, Approximation properties of certain summation integral type operators, Demonstratio Mathematica, Vol. XLVIII no. 1, 2015. · Zbl 1312.41024 [30] M.A. ¨Ozarslan and H. Aktuˇglu, Local approximation for certain King type operators, Filomat, 27:1 (2013), 173-181. [31] H.M. Srivastava and V. Gupta, A Certain family of summation-integral type operators, Math. Comput. Modelling, 37(2003), 1307-1315. · Zbl 1058.41015 [32] D.D. Stancu, Approximation of functions by a new class of linear polynomial operators, Rev. Roum. Math. Pures Appl., 13(8) (1968), 1173-1194. · Zbl 0167.05001 [33] D.K. Verma, Approximation by generalized Srivastava-Gupta operators based on certain parameter, PUBLICATIONS DE L’INSTITUT MATH ´EMATIQUE, (2017). · Zbl 1499.41043 [34] D.K. Verma and P.N. Agrawal, Convergence in simultaneous approximation for SrivastavaGupta operators, Math. Sci., Springer 6 (2012). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.