×

Quantifying Poincaré’s continuation method for nonlinear oscillators. (English) Zbl 1433.34054

Summary: In the sixties, W. S. Loud obtained interesting results of continuation on periodic solutions in driven nonlinear oscillators with small parameter [Mem. Am. Math. Soc. 47, 133 p. (1964; Zbl 0128.31802)]. In this paper Loud’s results are extended out for periodically driven Duffing equations with odd symmetry quantifying the continuation parameter for a periodic odd solution which is elliptic and emanates from the equilibrium of the nonperturbed problem.

MSC:

34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34D10 Perturbations of ordinary differential equations

Citations:

Zbl 0128.31802
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Gomis-Porqueras, P.; Haro, À., A geometric description of a macroeconomic model with a center manifold, Journal of Economic Dynamics and Control, 33, 6, 1217-1235, (2009) · Zbl 1176.91098 · doi:10.1016/j.jedc.2008.10.008
[2] Simó, C.; Benest, D.; Froeschlé, C., On the analytical and numerical approximation of invariant manifolds, Les Méthodes Modernes de la Mecánique Céleste. Les Méthodes Modernes de la Mecánique Céleste, Course Given at Goutelas, France, 285-329, (1989), Paris, France: Editions Frontieres, Paris, France
[3] Loud, W., Periodic Solutions of Perturbed Second-Order Autonomous Equation. Periodic Solutions of Perturbed Second-Order Autonomous Equation, Memoirs of the American Mathematical Society no. 47, (1964), Providence, RI, USA: American Mathematical Society, Providence, RI, USA · Zbl 0128.31802
[4] Hamel, G., Über erzwungene Schwingungen bei endlichen Amplituden, Mathematische Annalen, 86, 1-2, 1-13, (1922) · JFM 48.0519.03 · doi:10.1007/BF01458566
[5] Núñez, D.; Torres, P. J., KAM dynamics and stabilization of a particle sliding over a periodically driven curve, Applied Mathematics Letters, 20, 6, 610-615, (2007) · Zbl 1130.70320 · doi:10.1016/j.aml.2006.05.023
[6] Ortega, R., A forced pendulum equation with many periodic solutions, Rocky Mountain Journal of Mathematics, 27, 3, 861-876, (1997) · Zbl 0899.34031 · doi:10.1216/rmjm/1181071898
[7] Lei, J.; Li, X.; Yan, P.; Zhang, M., Twist character of the least amplitude periodic solution of the forced pendulum, SIAM Journal on Mathematical Analysis, 35, 4, 844-867, (2004) · Zbl 1189.37064 · doi:10.1137/s003614100241037x
[8] Mawhin, J., Seventy-five years of global analysis around the forced pendulum equation, Proceedings of the Equadiff 9, Conference on Differential Equations and Their Applications
[9] Leray, J.; Schauder, J., Topologie et quations fonctionnelles, Annales Scientifiques de l’École Normale Supérieure, 51, 3, 45-78, (1934) · JFM 60.0322.02
[10] Llibre, J.; Ortega, R., On the families of periodic orbits of the Sitnikov problem, SIAM Journal on Applied Dynamical Systems, 7, 2, 561-576, (2008) · Zbl 1159.70010 · doi:10.1137/070695253
[11] Ortega, R.; Rivera, A., Global bifurcations from the center of mass in the Sitnikov problem, Discrete and Continuous Dynamical Systems Series B, 14, 2, 719-732, (2010) · Zbl 1380.70028 · doi:10.3934/dcdsb.2010.14.719
[12] Krantz, S.; Parks, H., The Implicit Function Theorem History, Theory and Applications, (2002), Boston, Mass, USA: Birkhäuser, Boston, Mass, USA · Zbl 1012.58003
[13] Freire, E.; Gasull, A.; Guillamon, A., First derivative of the period function with applications, Journal of Differential Equations, 204, 1, 139-162, (2004) · Zbl 1063.34025 · doi:10.1016/j.jde.2004.04.005
[14] Ortega, R., The twist coefficient of periodic solutions of a time-dependent Newton’s equation, Journal of Dynamics and Differential Equations, 4, 4, 651-665, (1992) · Zbl 0761.34036 · doi:10.1007/bf01048263
[15] Sotomayor, J., Licões de Equacões Diferenciais Ordinárias. Licões de Equacões Diferenciais Ordinárias, Proyecto Euclides No 11, (1979), Rio de Janerio, Brasil: Instituto de Matemática Pura e Aplicada (IMPA-CNPq), Rio de Janerio, Brasil · Zbl 0509.34001
[16] Coddington, E. A.; Levinson, N., Theory of Ordinary Differential Equations, (1955), New York, NY, USA: McGraw-Hill, New York, NY, USA · Zbl 0064.33002
[17] Möser, J., On the invariant curves of area preserving mappings of an annulus, Nachrichten der Akademie der Wissenschaften in Göttingen. II. Mathematisch-Physikalische Klasse, 2, 1-20, (1962) · Zbl 0107.29301
[18] Ortega, R., Periodic solutions of a newtonian equation: stability by the third approximation, Journal of Differential Equations, 128, 2, 491-518, (1996) · Zbl 0855.34058 · doi:10.1006/jdeq.1996.0103
[19] Zhang, M., The best bound on the rotations in the stability of periodic solutions of a Newtonian equation, Journal of the London Mathematical Society, 67, 1, 137-148, (2003) · Zbl 1050.34075 · doi:10.1112/s0024610702003939
[20] Núñez, D.; Torres, P. J., On the motion of an oscillator with a periodically time-varying mass, Nonlinear Analysis: Real World Applications, 10, 4, 1976-1983, (2009) · Zbl 1163.34354 · doi:10.1016/j.nonrwa.2008.03.003
[21] Núñez, D.; Torres, P. J., Stabilization by vertical vibrations, Mathematical Methods in the Applied Sciences, 32, 9, 1118-1128, (2009) · Zbl 1176.34073 · doi:10.1002/mma.1082
[22] Hanßmann, H.; Simó, C., Dynamical stability of quasi-periodic response solutions in planar conservative systems, Indagationes Mathematicae, 23, 3, 151-166, (2012) · Zbl 1287.37035 · doi:10.1016/j.indag.2012.01.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.