×

A meshless technique based on generalized moving least squares combined with the second-order semi-implicit backward differential formula for numerically solving time-dependent phase field models on the spheres. (English) Zbl 1433.82023

Summary: In the current research paper, the generalized moving least squares technique is considered to approximate the spatial variables of two time-dependent phase field partial differential equations on the spheres in Cartesian coordinate. This is known as a direct approximation (it is the standard technique for generalized finite difference scheme [D. Mirzaei, BIT 57, No. 4, 1041–1063 (2017; Zbl 1407.65312); R. Schaback, Lect. Notes Comput. Sci. Eng. 115, 117–143 (2017; Zbl 1406.65131)]), and it can be applied for scattered points on each local sub-domain. The main advantage of this approach is to approximate the Laplace-Beltrami operator on the spheres using different types of distribution points simply, in which the studied mathematical models are involved. In fact, this scheme permits us to solve a given partial differential equation on the sphere directly without changing the original problem to a problem on a narrow band domain with pseudo-Neumann boundary conditions. A second-order semi-implicit backward differential formula (by adding a stabilized term to the chemical potential that is the second-order Douglas-Dupont-type regularization) is applied to approximate the temporal variable. We show that the time discretization considered here guarantees the mass conservation and energy stability. Besides, the convergence analysis of the proposed time discretization is given. The resulting fully discrete scheme of each partial differential equation is a linear system of algebraic equations per time step that is solved via an iterative method, namely biconjugate gradient stabilized algorithm. Some numerical experiments are presented to simulate the phase field Cahn-Hilliard, nonlocal Cahn-Hilliard (for diblock copolymers as microphase separation patterns) and crystal equations on the two-dimensional spheres.

MSC:

82M20 Finite difference methods applied to problems in statistical mechanics
35Q82 PDEs in connection with statistical mechanics
82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics

Software:

Matlab
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abbaszadeh, M.; Dehghan, M., Investigation of the Oldroyd model as a generalized incompressible Navier-Stokes equation via the interpolating stabilized element free Galerkin technique, Appl. Numer. Math., 150, 274-294 (2020) · Zbl 1444.76083
[2] Adalsteinsson, D.; Sethian, J. A., Transport and diffusion of material quantities on propagating interfaces via level set methods, J. Comput. Phys., 185, 1, 271-288 (2003) · Zbl 1047.76093
[3] Atkinson, K.; Han, W., Theoretical Numerical Analysis (2005), Springer: Springer Berlin · Zbl 1068.47091
[4] Atkinson, K.; Han, W., Spherical Harmonics and Approximations on the Unit Sphere: An Introduction (2012), Springer: Springer New York · Zbl 1254.41015
[5] Backofen, R.; Voigt, A.; Witkowski, T., Particles on curved surfaces: a dynamic approach by a phase-field-crystal model, Phys. Rev. E, 81, Article 025701 pp. (2010)
[6] Backofen, R.; Gräf, M.; Potts, D.; Praetorius, S.; Voigt, A.; Witkowski, T., A continuous approach to discrete ordering on \(\mathbb{S}^2\), Multiscale Model. Simul., 9, 314-334 (2011) · Zbl 1219.35341
[7] Baskaran, A.; Hu, Z. Z.; Lowengrub, J. S.; Wang, C.; Wise, S. M.; Zhou, P., Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation, J. Comput. Phys., 250, 270-292 (2013) · Zbl 1349.65265
[8] Baumgart, T.; Hess, S. T.; Webb, W. W., Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension, Nature, 425, 821-824 (2003)
[9] Bausch, A. R.; Bowick, M. J.; Cacciuto, A.; Dinsmore, A. D.; Hsu, M. F.; Nelson, D. R.; Nikolaides, M. G.; Travesset, A.; Weitz, D. A., Grain boundary scars and spherical crystallography, Science, 299, 1716-1718 (2003)
[10] Berry, J.; Grant, M.; Elder, K. R., Diffusive atomistic dynamics of edge dislocations in two dimensions, Phys. Rev. E, 73, Article 031609 pp. (2006)
[11] Bertalmo, M.; Cheng, L.; Osher, S.; Sapiro, G., Variational problems and partial differential equations on implicit surfaces, J. Comput. Phys., 174, 759-780 (2001) · Zbl 0991.65055
[12] Biben, T.; Kassner, K.; Misbah, C., Phase-field approach to three-dimensional vesicle dynamics, Phys. Rev. E, 72, Article 041921 pp. (2005)
[13] Boettinger, W. J.; Warren, J. A.; Beckermann, C.; Karma, A., Phase-field simulation of solidification, Annu. Rev. Mater. Sci., 32, 163-194 (2002)
[14] Cahn, J. W.; Hilliard, J. E., Free energy of a nonuniform system I, interfacial free energy, J. Chem. Phys., 28, 258-267 (1958) · Zbl 1431.35066
[15] Cahn, J. W., On spinodal decomposition, Acta Metall., 9, 795-801 (1961)
[16] Calhoun, D. A.; Helzel, C.; Leveque, R. J., Logically rectangular grids and finite volume methods for PDEs in circular and spherical domains, SIAM Rev., 50, 723-752 (2008) · Zbl 1155.65061
[17] Calhoun, D. A.; Helzel, C., A finite volume method for solving parabolic equations on logically Cartesian curved surface meshes, SIAM J. Sci. Comput., 31, 6, 4066-4099 (2009) · Zbl 1208.65136
[18] Chen, L.; Liu, X.; Li, X., The boundary element-free method for 2D interior and exterior Helmholtz problems, Comput. Math. Appl., 77, 846-864 (2019) · Zbl 1442.65403
[19] Chen, L.; Li, X., A complex variable boundary element-free method for the Helmholtz equation using regularized combined field integral equations, Appl. Math. Lett., 101, Article 106067 pp. (2020) · Zbl 1427.65395
[20] Cheng, K.; Feng, W.; Wang, C.; Wise, S. M., An energy stable fourth order finite difference scheme for the Cahn-Hilliard equation, J. Comput. Appl. Math., 362, 574-595 (2019) · Zbl 1416.65256
[21] Dai, F.; Xu, Y., Polynomial approximation in Sobolev spaces on the unit sphere and the unit ball, J. Approx. Theory, 163, 1400-1418 (2011) · Zbl 1236.41031
[22] Dai, F.; Xu, Y., Approximation Theory and Harmonic Analysis on Spheres and Balls (2013), Springer: Springer New York · Zbl 1275.42001
[23] Dehghan, M.; Narimani, N., Approximation of continuous surface differential operators with the generalized moving least-squares (GMLS) method for solving reaction-diffusion equation, Comput. Appl. Math., 37, 5, 6955-6971 (2018) · Zbl 1413.65381
[24] Dehghan, M.; Abbaszadeh, M., The meshless local collocation method for solving multi-dimensional Cahn-Hilliard, Swift-Hohenberg and phase field crystal equations, Eng. Anal. Bound. Elem., 78, 49-64 (2017) · Zbl 1403.74285
[25] Dehghan, M., Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices, Math. Comput. Simul., 71, 1, 16-30 (2006) · Zbl 1089.65085
[26] Dehghan, M.; Mirzaei, D., A numerical method based on the boundary integral equation and dual reciprocity methods for one-dimensional Cahn-Hilliard equation, Eng. Anal. Bound. Elem., 33, 4, 522-528 (2009) · Zbl 1244.74149
[27] Dehghan, M., On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation, Numer. Methods Partial Differ. Equ., 21, 1, 24-40 (2005) · Zbl 1059.65072
[28] Dolcetta, I. C.; Vita, S. F.; March, R., Area preserving curve-shortening flows: from phase separation to image processing, Interfaces Free Bound., 4, 325-343 (2002) · Zbl 1021.35129
[29] Du, Q.; Ju, L.; Tian, L., Finite element approximation of the Cahn-Hilliard equation on surfaces, Comput. Methods Appl. Mech. Engrg., 200, 2458-2470 (2011) · Zbl 1230.80010
[30] Dziuk, G., Finite elements for the Beltrami operator on arbitrary surfaces, (Hildebrandt, S.; Leis, R., Partial Differential Equations and Calculus of Variations. Partial Differential Equations and Calculus of Variations, Lecture Notes in Mathematics, vol. 1357 (1988), Springer: Springer Berlin) · Zbl 0663.65114
[31] Dziuk, G.; Elliot, C., Finite elements on evolving surfaces, IMA J. Numer. Anal., 27, 262-292 (2007) · Zbl 1120.65102
[32] Dziuk, G.; Elliot, C. M., Surface finite elements for parabolic equations, J. Comput. Math., 25, 385-407 (2007)
[33] Elder, K. R.; Grant, M., Modeling elastic and plastic deformations in non-equilibrium processing using phase field crystal, Phys. Rev. E, 68, Article 066703 pp. (2003)
[34] Elder, K. R.; Katakowski, M.; Haataja, M.; Grant, M., Modeling elasticity in crystal growth, Phys. Rev. Lett., 88, Article 245701 pp. (2002)
[35] Elder, K. R.; Provatas, N.; Berry, J.; Stefanovic, P.; Grant, M., Phase-field crystal modeling and classical density functional theory of freezing, Phys. Rev. B, 75, Article 064107 pp. (2007)
[36] Elsey, M.; Wirth, B., A simple and efficient scheme for phase field crystal simulation, ESAIM: Math. Model. Numer. Anal., 47, 5, 1413-1432 (2013) · Zbl 1286.74118
[37] Fasshauer, G., Meshfree Approximation Methods with Matlab (2007), World Scientific · Zbl 1123.65001
[38] Folch, R.; Casademunt, J.; Hernandez-Machado, A.; Ramirez-Piscina, L., Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast II, Numerical study, Phys. Rev. E, 60, 1734-1740 (1999)
[39] Furihata, D., A stable and conservative finite difference scheme for the Cahn-Hilliard equation, Numer. Math., 87, 675-699 (2001) · Zbl 0974.65086
[40] Fuselier, E. J.; Wright, G. B., A high-order kernel method for diffusion and reaction-diffusion equations on surfaces, J. Sci. Comput., 56, 3, 535-565 (2013) · Zbl 1275.65056
[41] Fuselier, E.; Wright, G. B., Order-preserving derivative approximation with periodic radial basis functions, Adv. Comput. Math., 41, 23-53 (2015) · Zbl 1311.41002
[42] Gera, P.; Salac, D., Cahn-Hilliard on surfaces: a numerical study, Appl. Math. Lett., 73, 56-61 (2017) · Zbl 1393.82012
[43] Goldenfeld, N.; Athreya, B. P.; Dantzig, J. A., Renormalization group approach to multiscale simulation of polycrystalline materials using the phase field crystal model, Phys. Rev. E, 72, Article 1 pp. (2005)
[44] Gomez, H.; Nogueira, X., An unconditionally energy-stable method for the phase field crystal equation, Comput. Methods Appl. Mech. Engrg., 249-252, 52-61 (2012) · Zbl 1348.74280
[45] Gross, B. J.; Trask, N.; Kuberry, P.; Atzberger, P. J., Meshfree methods on manifolds for hydrodynamic flows on curved surfaces: a generalized moving least-squares (GMLS) approach, J. Comput. Phys., Article 109340 pp. (2020) · Zbl 1435.76059
[46] Guo, R.; Xu, Y., Local discontinuous Galerkin method and high order semi-implicit scheme for the phase field crystal equation, SIAM J. Sci. Comput., 38, 1, 105-127 (2016) · Zbl 1330.65149
[47] Jamshidian, M.; Rabczuk, T., Phase field modelling of stressed grain growth: analytical study and the effect of microstructural length scale, J. Comput. Phys., 261, 23-35 (2014) · Zbl 1349.82159
[48] Jeong, D.; Kim, J., Microphase separation patterns in diblock copolymers on curved surfaces using a nonlocal Cahn-Hilliard equation, Eur. Phys. J. E, 38, 117 (2015)
[49] Karma, A.; Kessler, D. A.; Levine, H., Phase-field model of mode III dynamic fracture, Phys. Rev. Lett., 87, Article 045501 pp. (2001)
[50] Kim, J.; Lee, S.; Choi, Y., A conservative Allen-Cahn equation with a space-time dependent Lagrange multiplier, Int. J. Eng. Sci., 84, 11-17 (2014) · Zbl 1425.65089
[51] Langer, J. S., Instabilities and pattern formation in crystal growth, Rev. Mod. Phys., 52, 1-30 (1980)
[52] Le Gia, Q. T.; Narcowich, F. J.; Ward, J. D.; Wendland, H., Continuous and discrete least-squares approximation by radial basis functions on spheres, J. Approx. Theory, 143, 124-133 (2006) · Zbl 1110.41007
[53] Lehto, E.; Shankar, V.; Wright, G. B., A radial basis function (RBF) compact finite difference (FD) scheme for reaction-diffusion equations on surfaces, SIAM J. Sci. Comput., 39, 5, 2129-2151 (2017) · Zbl 1371.41018
[54] Li, Y.; Kim, J., Multiphase image segmentation using a phase-field model, Comput. Math. Appl., 62, 737-745 (2011) · Zbl 1228.94009
[55] Li, Y.; Kim, J., An efficient and stable compact fourth-order finite difference scheme for the phase field crystal equation, Comput. Methods Appl. Mech. Engrg., 319, 194-216 (2017) · Zbl 1439.76122
[56] Li, Y.; Jeong, D.; Choi, J.; Lee, S.; Kim, J., Fast local image inpainting based on the Allen-Cahn model, Digit. Signal Process., 37, 65-74 (2015)
[57] Li, Y.; Kim, J.; Wang, N., An unconditionally energy-stable second-order time-accurate scheme for the Cahn-Hilliard equation on surfaces, Commun. Nonlinear Sci. Numer. Simul., 53, 213-227 (2017) · Zbl 1510.82057
[58] Li, Y.; Luo, C.; Xia, B.; Kim, J., An efficient linear second order unconditionally stable direct discretization method for the phase-field crystal equation on surfaces, Appl. Math. Model., 67, 477-490 (2019) · Zbl 1481.82014
[59] Li, X., Three-dimensional complex variable element-free Galerkin method, Appl. Math. Model., 63, 148-171 (2018) · Zbl 1480.65342
[60] Lee, D.; Huh, J. Y.; Jeong, D.; Shin, J.; Yun, A.; Kim, J., Physical, mathematical, and numerical derivations of the Cahn-Hilliard equation, Comput. Mater. Sci., 81, 216-225 (2014)
[61] Lee, H. G.; Kim, J., A simple and efficient finite difference method for the phase-field crystal equation on curved surfaces, Comput. Methods Appl. Mech. Engrg., 307, 32-43 (2016) · Zbl 1436.74084
[62] Lee, H. G.; Shin, J.; Lee, J.-Y., First and second order operator splitting methods for the phase field crystal equation, J. Comput. Phys., 299, 82-91 (2015) · Zbl 1351.74156
[63] Li, Q.; Mei, L.; You, B., A second-order, uniquely solvable, energy stable BDF numerical scheme for the phase field crystal model, Appl. Numer. Math., 134, 46-65 (2018) · Zbl 06933817
[64] Li, D.; Qiao, Z., On second order semi-implicit Fourier spectral methods for 2D Cahn-Hilliard equations, J. Sci. Comput., 70, 301-341 (2017) · Zbl 1434.65206
[65] Lowengrub, J. S.; Frieboes, H. B.; Jin, F.; Chuang, Y-L.; Li, X.; Macklin, P.; Wise, S. M.; Cristini, V., Nonlinear modelling of cancer: bridging the gap between cells and tumours, Nonlinearity, 23, 1-91 (2010) · Zbl 1181.92046
[66] Macdonald, C. B.; Ruuth, S. J., Level set equations on surfaces via the closest point method, J. Sci. Comput., 35, 219-240 (2008) · Zbl 1203.65143
[67] Memoli, F.; Sapiro, G.; Thompson, P., Implicit brain imaging, NeuroImage, 23, 179-188 (2004)
[68] Mirzaei, D.; Schaback, R.; Dehghan, M., On generalized moving least squares and diffuse derivatives, IMA J. Numer. Anal., 32, 3, 983-1000 (2012) · Zbl 1252.65037
[69] Mirzaei, D., Direct approximation on spheres using generalized moving least squares, BIT Numer. Math., 57, 1041-1063 (2017) · Zbl 1407.65312
[70] Mohammadi, V.; Mirzaei, D.; Dehghan, M., Numerical simulation and error estimation of the time-dependent Allen-Cahn equation on surfaces with radial basis functions, J. Sci. Comput., 79, 1, 493-516 (2019) · Zbl 1426.65149
[71] Moure, A.; Gomez, H., Computational model for amoeboid motion: coupling membrane and cytosol dynamics, Phys. Rev. E, 94, Article 042423 pp. (2016)
[72] Myers, T. G.; Charpin, J. P.F.; Chapman, S. J., The flow and solidification of a thin fluid film on an arbitrary three-dimensional surface, Phys. Fluids, 14, 2788-2803 (2002) · Zbl 1185.76270
[73] Praetorius, S., Efficient Solvers for the Phase-Field Crystal Equation: Development and Analysis of a Block-Preconditioner (2015), Technischen Universität Dresden, PhD thesis
[74] Praetorius, S.; Voigt, A., Development and analysis of a block-preconditioner for the phase-field crystal equation, SIAM J. Sci. Comput., 37, 425-451 (2015) · Zbl 1320.82059
[75] Praetorius, S.; Voigt, A.; Wittkowski, R.; L.öwen, H., Active crystals on a sphere, Phys. Rev. E, 97, Article 052615 pp. (2018)
[76] Rätz, A., A benchmark for the surface Cahn-Hilliard equation, Appl. Math. Lett., 56, 65-71 (2016) · Zbl 1381.35251
[77] Schaback, R., Error analysis of nodal meshless methods, (Griebel, M.; Schweitzer, M. A., Meshfree Methods for Partial Differential Equations VIII. Meshfree Methods for Partial Differential Equations VIII, Lecture Notes in Computational Science and Engineering, vol. 115 (2017)), 117-143 · Zbl 1406.65131
[78] Sens, P.; Safran, S. A., Inclusions induced phase separation in mixed lipid film, Eur. Phys. J. E, 1, 237-248 (2000)
[79] Shen, J.; Yang, X., Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discrete Contin. Dyn. Syst., 28, 4, 1669-1691 (2010) · Zbl 1201.65184
[80] Shin, J.; Lee, H. G.; Lee, J.-Y., First and second order numerical methods based on a new convex splitting for phase-field crystal equation, J. Comput. Phys., 327, 519-542 (2016) · Zbl 1373.82097
[81] Stefanovic, P.; Haataja, M.; Provatas, N., Phase field crystal study of deformation and plasticity in nanocrystalline materials, Phys. Rev. E, 80, Article 046107 pp. (2009)
[82] Tang, P.; Qiu, F.; Zhang, H.; Yang, Y., Phase separation patterns for diblock copolymers on spherical surfaces: a finite volume method, Phys. Rev. E, 72, Article 016710 pp. (2005)
[83] Teigen, K. E.; Li, X.; Lowengrub, J.; Wang, F.; Voigt, A., A diffuse-interface approach for modeling transport, diffusion and adsorption/desorption of material quantities on a deformable interface, Commun. Math. Sci., 4, 7, 1009-1037 (2009) · Zbl 1186.35168
[84] Thamburaj, P.; Jamshidian, M., A multiscale Taylor model-based constitutive theory describing grain growth in polycrystalline cubic metals, J. Mech. Phys. Solids, 63, 1-28 (2014) · Zbl 1303.74012
[85] Tremaine, S., On the origin of irregular structure in Saturn’s rings, Astron. J., 125, 894-901 (2003)
[86] Tuncer, N., Projected surface finite elements for elliptic equations, Appl. Appl. Math., 8, 1, 16-33 (2013) · Zbl 1270.65072
[87] Turk, G., Generating textures on arbitrary surfaces using reaction-diffusion, ACM SIGGRAPH Comput. Graph., 25, 289-298 (1991)
[88] Wang, L.; Yu, H., On efficient second order stabilized semi-implicit schemes for the Cahn-Hilliard phase-field equation, J. Sci. Comput., 77, 1185-1209 (2018) · Zbl 1407.65163
[89] Wendland, H., Scattered data approximation, (Cambridge Monograph on Applied and Computational Mathematics (2005), Cambridge University Press: Cambridge University Press New York) · Zbl 1075.65021
[90] Wendland, H., Moving least squares approximation on the sphere, (Lyche, T.; Schumaker, L. L., Mathematical Methods for Curves and Surfaces: Oslo, 2000 (2000), Vanderbilt University Press: Vanderbilt University Press Nashville), 517-526 · Zbl 0989.65043
[91] Wise, S. M.; Wang, C.; Lowengrub, J. S., An energy-stable and convergence finite-difference scheme for the phase field crystal equation, SIAM J. Numer. Anal., 47, 2269-2288 (2009) · Zbl 1201.35027
[92] Womersley, R. S.; Sloan, I. H., Interpolation and cubature on the sphere, Website · Zbl 0952.65013
[93] Xu, J. J.; Zhao, H. K., An Eulerian formulation for solving partial differential equations along a moving interface, J. Sci. Comput., 19, 573-594 (2003) · Zbl 1081.76579
[94] Yan, Y.; Chen, W.; Wang, C.; Wise, S. M., A second-order energy stable BDF numerical scheme for the Cahn-Hilliard equation, Commun. Comput. Phys., 23, 2, 572-602 (2018) · Zbl 1488.65367
[95] Zhang, Z.; Ma, Y.; Qiao, Z., An adaptive time-stepping strategy for solving the phase field crystal model, J. Comput. Phys., 249, 204-215 (2013) · Zbl 1305.82009
[96] Zhang, T.; Li, X., Variational multiscale interpolating element-free Galerkin method for the nonlinear Darcy-Forchheimer model, Comput. Math. Appl., 79, 2, 363-377 (2020) · Zbl 1443.65382
[97] Zhu, L.; Du, Q., Error estimates for approximations of a gradient dynamics for phase field elastic bending energy of vesicle membrane deformation, Math. Methods Appl. Sci., 37, 913-930 (2014) · Zbl 1432.74211
[98] https://en.wikipedia.org/wiki/Crystal
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.