×

Directional compactly supported tensor product complex tight framelets with applications to image denoising and inpainting. (English) Zbl 1434.42044

Summary: Compactly supported tight framelets are of great interest and importance in both theory and application. In this paper we discuss how to construct directional compactly supported tensor product complex tight framelets having varied directionality and good performance for applications in image processing. Our construction algorithms employ optimization techniques and put extensive emphasis on frequency response and spatial localization of their underlying one-dimensional tight framelet filter banks. Several concrete examples of directional compactly supported tensor product complex tight framelet filter banks are provided in this paper. Our numerical experiments show that such constructed directional compactly supported tensor product complex tight framelets have good performance for applications such as image denoising and inpainting compared with several other state-of-the-art transform-based methods.

MSC:

42C15 General harmonic expansions, frames
42B05 Fourier series and coefficients in several variables
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
65T60 Numerical methods for wavelets
68U10 Computing methodologies for image processing
68W35 Hardware implementations of nonnumerical algorithms (VLSI algorithms, etc.)
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
94A12 Signal theory (characterization, reconstruction, filtering, etc.)

Software:

ShearLab
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] B. G. Bodmann, G. Kutyniok, and X. Zhuang, Gabor shearlets, Appl. Comput. Harmon. Anal., 38 (2015), pp. 87-114. · Zbl 1304.42084
[2] E. J. Candès, and D. L. Donoho, New tight frames of curvelets and optimal representations of objects with piecewise \(C^2\) singularities, Commun. Pure Appl. Math., 57 (2004), pp. 219-266. · Zbl 1038.94502
[3] E. Candès, L. Demanet, D. Donoho, and L. Ying, Fast discrete curvelet transforms, Multiscale Model. Simul., 5 (2006), pp. 861-899. · Zbl 1122.65134
[4] E. J. Candès and D. L. Donoho, Ridgelets: A key to higher-dimensional intermittency?, Philos. Trans. Roy. Soc. A, 357 (1999), pp. 2495-2509. · Zbl 1082.42503
[5] Z. Che and X. Zhuang, Digital affine shear filter banks with 2-layer structure and their applications in image processing, IEEE Trans. Image Process., 27 (2018), pp. 3931-3941. · Zbl 1409.94081
[6] C. K. Chui, An Introduction to Wavelets, Academic Press, New York, 1992. · Zbl 0925.42016
[7] C. K. Chui, W. He, and J. Stöckler, Compactly supported tight and sibling frames with maximum vanishing moments, Appl. Comput. Harmon. Anal., 13 (2002), pp. 224-262. · Zbl 1016.42023
[8] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Image denoising by sparse 3D transform-domain collaborative filtering, IEEE Trans. Image Process., 16 (2007), pp. 3736-3745.
[9] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math. 61, SIAM, Philadelphia, 1992. · Zbl 0776.42018
[10] I. Daubechies, B. Han, A. Ron, and Z. Shen, Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal., 14 (2003), pp. 1-46. · Zbl 1035.42031
[11] B. Dong and Z. Shen, MRA-based wavelet frames and applications, in Mathematics in Image Processing, IAS/Park City Math. Ser., 19, American Mathematical Society, Providence, RI, 2010, pp. 7-158. · Zbl 1344.94009
[12] D. L. Donoho, G. Kutyniok, M. Shahram, and X. Zhuang, A rational design of a digital shearlet transform, in the 9th International Conference on Sampling Theory and Applications (SampTA’11), Singapore, 2011.
[13] G. Easley, D. Labate, and W.-Q. Lim, Sparse directional image representations using the discrete shearlet transform, Appl. Comput. Harmon. Anal., 25 (2008), pp. 25-46. · Zbl 1147.68794
[14] K. Guo, G. Kutyniok, and D. Labate, Sparse multidimensional representations using anisotropic dilation and shear operators, Wavelets and Splines (Athens, GA, 2005), Nashboro Press, Nashville, TN, 2006, pp. 189-201. · Zbl 1099.65148
[15] K. Guo, D. Labate, W.-Q. Lim, G. Weiss, and E. N. Wilson, Wavelets with composite dilations, Electron. Res. Announc. Amer. Math. Soc., 10 (2004), pp. 78-87. · Zbl 1066.42023
[16] B. Han, On dual wavelet tight frames, Appl. Comput. Harmon. Anal., 4 (1997), pp. 380-413. · Zbl 0880.42017
[17] B. Han, Symmetric orthonormal complex wavelets with masks of arbitrarily high linear-phase moments and sum rules, Adv. Comput. Math., 32 (2010), pp. 209-237. · Zbl 1184.42030
[18] B. Han, Nonhomogeneous wavelet systems in high dimensions, Appl. Comput. Harmon. Anal., 32 (2012), pp. 169-196. · Zbl 1241.42028
[19] B. Han, Properties of discrete framelet transforms, Math. Model. Nat. Phenom., 8 (2013), pp. 18-47. · Zbl 1268.42073
[20] B. Han, Symmetric tight framelet filter banks with three high-pass filters, Appl. Comput. Harmon. Anal., 37 (2014), pp. 140-161. · Zbl 1336.65210
[21] B. Han, Algorithm for constructing symmetric dual framelet filter banks, Math. Comp., 84 (2015), pp. 767-801. · Zbl 1306.42058
[22] B. Han, Framelets and Wavelets: Algorithms, Analysis, and Applications, Appl. Numer. Harmon. Anal., Birkhäuser, Cham, Switzerland, 2017. · Zbl 1387.42001
[23] B. Han, Q. Mo, and Z. Zhao, Compactly supported tensor product complex tight framelets with directionality, SIAM J. Math. Anal., 47 (2015), pp. 2464-2494. · Zbl 1319.42031
[24] B. Han and Z. Zhao, Tensor product complex tight framelets with increasing directionality, SIAM J. Imaging Sci., 7 (2014), pp. 997-1034. · Zbl 1295.42023
[25] B. Han, Z. Zhao, and X. Zhuang, Directional tensor product complex tight framelets with low redundancy, Appl. Comput. Harmon. Anal., 41 (2016), pp. 603-637. · Zbl 1346.42046
[26] B. Han and X. Zhuang, Smooth affine shear tight frames with MRA structure, Appl. Comput. Harmon. Anal., 39 (2015), pp. 300-338. · Zbl 1393.42032
[27] S. Häuser and G. Steidl, Convex multiclass segmentation with shearlet regularization, Int. J. Comput. Math., 90 (2013), pp. 62-81. · Zbl 1278.65208
[28] N. G. Kingsbury, Complex wavelets for shift invariant analysis and filtering of signals, Appl. Comput. Harmon. Anal., 10 (2001), pp. 234-253. · Zbl 0990.94005
[29] G. Kutyniok and D. Labate, Shearlets: Multiscale Analysis for Multivariate Data, Birkhäuser, Boston, 2012. · Zbl 1237.42001
[30] G. Kutyniok, W.-Q. Lim, and R. Reisenhofer, ShearLab 3D: Faithful digital shearlet transforms based on compactly supported shearlets, ACM Trans. Math. Software, 42 (2016), 5. · Zbl 1347.65203
[31] G. Kutyniok, M. Shahram, and X. Zhuang, ShearLab: A rational design of a digital parabolic scaling algorithm, SIAM J. Imaging Sci., 5 (2012), pp. 1291-1332. · Zbl 1257.42048
[32] M. Lebrun, An analysis and implementation of the BM3D image denoising method, IPOL J. Image Process. Online, 2 (2012), pp. 175-213.
[33] Y.-R. Li, L. Shen, and B. W. Suter, Adaptive inpainting algorithm based on DCT induced wavelet regularization, IEEE Trans. Image Process., 22 (2013), pp. 752-763. · Zbl 1373.94242
[34] W.-Q Lim, The discrete shearlet transform: A new directional transform and compactly supported shearlet frames, IEEE Trans. Image Process., 19 (2010), pp. 1166-1180. · Zbl 1371.94233
[35] W.-Q Lim, Nonseparable shearlet transform, IEEE Trans. Image Process., 22 (2013), pp. 2056-2065. · Zbl 1373.94251
[36] A. Ron and Z. Shen, Affine systems in \(L_2(\R^d)\): The analysis of the analysis operator, J. Funct. Anal., 148 (1997), pp. 408-447. · Zbl 0891.42018
[37] I. W. Selesnick, R. G. Baraniuk, and N. G. Kingsbury, The dual-tree complex wavelet transform, IEEE Signal Process. Mag., 22 (2005), pp. 123-151.
[38] L. Sendur and I. W. Selesnick, Bivariate shrinkage with local variance estimation, IEEE Signal Process. Lett., 9 (2002), pp. 438-441.
[39] Y. Shen, B. Han, and E. Braverman, Image inpainting from partial noisy data by directional complex tight framelets, ANZIAM J., 58 (2017), pp. 247-255. · Zbl 1404.94007
[40] E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger, Shiftable multiscale transforms, IEEE Trans. Inform. Theory, 38 (1992), pp. 587-607.
[41] J.-L. Starck, E. J. Candès, and D. L. Donoho, The curvelet transform for image denoising, IEEE Trans. Image Process., 11 (2002), pp. 670-684. · Zbl 1288.94011
[42] X. Zhuang, Digital affine shear transforms: Fast realization and applications in image/video processing, SIAM J. Imaging Sci., 9 (2016), pp. 1437-1466. · Zbl 1387.94025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.